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SELECTION PROCEDURE

BY DONALD W. K. ANDREWS AND PANLE JIA BARWICK1

This paper is concerned with tests and confidence intervals for parameters that are
not necessarily point identified and are defined by moment inequalities. In the litera-
ture, different test statistics, critical-value methods, and implementation methods (i.e.,
the asymptotic distribution versus the bootstrap) have been proposed. In this paper, we
compare these methods. We provide a recommended test statistic, moment selection
critical value, and implementation method. We provide data-dependent procedures for
choosing the key moment selection tuning parameter κ and a size-correction factor η.

KEYWORDS: Asymptotic size, asymptotic power, bootstrap, confidence set, gener-
alized moment selection, moment inequalities, partial identification, refined moment
selection, test, unidentified parameter.

1. INTRODUCTION

THIS PAPER CONSIDERS INFERENCE in (unconditional) moment inequality
models with parameters that need not be point identified. We focus on con-
fidence sets for the true parameter, as opposed to the identified set. We con-
struct confidence sets (CS’s) by inverting Anderson–Rubin-type test statistics.
We consider a class of such statistics and a class of generalized moment selec-
tion (GMS) critical values. This approach follows Imbens and Manski (2004),
Chernozhukov, Hong, and Tamer (2007) (CHT), Andrews and Guggenberger
(2009) (AG), Andrews and Soares (2010) (AS), and other papers.

GMS and subsampling tests and CS’s are the only methods in the literature
that apply to arbitrary moment functions and have been shown to have cor-
rect asymptotic size in a uniform sense; see AG, AS, and Romano and Shaikh
(2008). AS and Bugni (2010) show that GMS tests dominate subsampling tests
in terms of asymptotic size and power properties. In addition, in our expe-
rience based on simulation results, subsampling tests often are substantially
undersized in finite samples in moment inequality testing problems. Hence, we
focus on GMS critical values.

GMS tests and CS’s depend on a test statistic function S� a critical-value
function ϕ� and a tuning parameter κ� In this paper, we determine a combina-
tion that performs well in terms of size and power, and can be recommended
for general use. To do so, we consider asymptotics in which κ equals a finite
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constant plus op(1)� rather than asymptotics in which κ → ∞ as n → ∞� as
has been considered elsewhere in the literature.2

We find that an adjusted Gaussian quasi-likelihood ratio (AQLR) test statis-
tic combined with a “t-test moment selection” critical value performs very well
in terms of asymptotic average power compared to other choices considered in
the literature.3 We develop data-dependent methods of selecting κ and a size-
correction factor η, and show that they yield very good asymptotic and finite-
sample size and power. We provide a table that makes them easy to implement
in practice for up to ten moment inequalities. For more than ten moment in-
equalities, the required constant, η2(p) (defined below), can be simulated as
described in Section S7.5 of the Supplemental Material. However, the accuracy
of this method diminishes as p increases.

We show that with independent and identically distributed (i.i.d.) observa-
tions, bootstrap critical values outperform those based on the asymptotic dis-
tribution in terms of finite-sample size. We also show that the bootstrap version
of the AQLR test performs similarly in terms of null rejection probabilities
and power to an analogous test based on the empirical likelihood ratio (ELR)
statistic. The AQLR-based test is noticeably faster to compute than the ELR-
based test and avoids computational convergence problems that can arise with
the ELR statistic when the correlation matrix of the moment conditions is sin-
gular.

The asymptotic results of the paper apply to i.i.d. and time series data, and to
moment functions that are based on preliminary estimators of point-identified
parameters.

In short, the contribution of this paper relative to the literature is to compare
(unconditional) moment inequality tests, determine a recommended test, and
provide data-dependent tuning parameters.

Other related papers in the literature (referenced below) include Hansen
(2005), Fan and Park (2007), Rosen (2008), Chiburis (2009), Bugni (2010),
Canay (2010), and Bugni, Canay, and Guggenberger (2012).

The remainder of the paper is organized as follows. Section 2 introduces
the model and describes the recommended confidence set and test. Section
3 defines the different test statistics and critical values that are compared in
the paper. Section 4 provides the numerical comparisons of the tests based on
asymptotic average power. Section 5 describes how the recommended data-
dependent tuning parameter κ̂ and size-correction factor η̂ are determined,
and provides numerical results assessing their performance. Section 6 gives
finite-sample results.

The Supplemental Material (Andrews and Barwick (2012)) provides mate-
rial that includes (i) the asymptotic results that are utilized in this paper, (ii) de-

2The theoretical arguments mentioned in the preceding paragraph rely on κ→ ∞ asymptotics.
3The “adjustment” in the AQLR test statistic is designed to handle singular asymptotic corre-

lation matrices of the sample moment functions.
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tails concerning the numerical results given here, and (iii) additional numerical
results.

Let R+ = {x ∈ R :x ≥ 0}� R++ = {x ∈ R :x > 0}� R+�∞ = R+ ∪ {+∞}� Kp =
K × · · · ×K (with p copies) for any set K, and 0p = (0� � � � �0)′ ∈Rp�

2. MODEL AND RECOMMENDED CONFIDENCE SET

The moment inequality model is specified as follows. The true value θ0

(∈Θ⊂ Rd) is assumed to satisfy the moment conditions

EF0mj(Wi�θ0)≥ 0 for j = 1� � � � �p�(2.1)

where {mj(·� θ) : j = 1� � � � �p} are known real-valued moment functions and
{Wi : i ≥ 1} are i.i.d. or stationary random vectors with joint distribution F0�
The observed sample is {Wi : i ≤ n}� The true value θ0 is not necessarily iden-
tified. The results also apply when the moment functions in (2.1) depend on
a parameter τ� that is, when they are of the form {mj(Wi�θ� τ) : j ≤ p}� and a
preliminary consistent and asymptotically normal estimator τ̂n(θ0) of τ exists;
see Section S9.1 of the Supplemental Material. In addition, the asymptotic re-
sults in Section S5 of the Supplemental Material allow for moment equalities
as well as moment inequalities.

We are interested in tests and confidence sets (CS’s) for the true value θ0�
We consider a confidence set obtained by inverting a test. The test is based on
a test statistic Tn(θ0) for testing H0 :θ = θ0� The nominal level 1 − α CS for θ0

is

CSn = {
θ ∈ Θ :Tn(θ) ≤ cn(θ)

}
�(2.2)

where cn(θ) is a data-dependent critical value.4
We now describe the recommended test statistic and critical value. The jus-

tifications for these recommendations are described below and are given in de-
tail in Sections S4 and S5 of the Supplemental Material. The recommended
test statistic is AQLR statistic, TAQLR�n(θ)� that is a function of the sample
moment conditions, n1/2mn(θ)� and an estimator of their asymptotic variance,
Σ̂n(θ):

TAQLR�n(θ) = S2A

(
n1/2mn(θ)� Σ̂n(θ)

)
(2.3)

= inf
t∈Rp

+�∞

(
n1/2mn(θ)− t

)′
Σ̃−1

n (θ)
(
n1/2mn(θ)− t

)
� where

mn(θ) = (
mn�1(θ)� � � � �mn�p(θ)

)′
�

4When θ is in the interior of the identified set, it may be the case that Tn(θ) = 0 and cn(θ) = 0�
In consequence, it is important that the inequality in the definition of CSn is ≤� not <.
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mn�j(θ) = n−1
n∑

i=1

mj(Wi�θ) for j ≤ p�

Σ̃n(θ) = Σ̂n(θ)+ max
{
ε− det

(
Ω̂n(θ)

)
�0

}
D̂n(θ)� ε = �012�

D̂n(θ) = Diag
(
Σ̂n(θ)

)
� Ω̂n(θ) = D̂−1/2

n (θ)Σ̂n(θ)D̂
−1/2
n (θ)�

and Diag(Σ) denotes the diagonal matrix based on the matrix Σ.5 Note that the
weight matrix Σ̃n(θ) depends only on Σ̂n(θ) and hence TAQLR�n(θ) can be writ-
ten as a function of (mn(θ)� Σ̂n(θ))� The function S2A(·) is an adjusted version
of the quasi-likelihood ratio (QLR) function S2(·) that appears in Section 3.
The adjustment is designed to handle singular variance matrices. Specifically,
the matrix Σ̃n(θ) equals the asymptotic variance matrix estimator Σ̂n(θ) with
an adjustment that ensures that Σ̃n(θ) is always nonsingular and is equivariant
to scale changes in the moment functions. The matrix Ω̂n(θ) is the correlation
matrix that corresponds to Σ̂n(θ)�

When the observations are i.i.d. and no parameter τ appears, we take

Σ̂n(θ) = n−1
n∑

i=1

(
m(Wi�θ)−mn(θ)

)(
m(Wi�θ)−mn(θ)

)′
� where(2.4)

m(Wi�θ)= (
m1(Wi�θ)� � � � �mp(Wi�θ)

)′
�

With temporally dependent observations or when a preliminary estimator of a
parameter τ appears, a different definition of Σ̂n(θ) often is required; see Sec-
tion S9.1 of the Supplemental Material. For example, with dependent obser-
vations, a heteroskedasticity and autocorrelation consistent (HAC) estimator
may be required.

The test statistic TAQLR�n(θ) is computed using a quadratic programming al-
gorithm. Such algorithms are built into GAUSS and Matlab. They are very fast
even when p is large. For example, to compute the AQLR test statistic 100,000
times takes 2�6� 2�9� and 4�7 seconds when p= 2� 4� and 10� respectively, using
GAUSS on a PC with a 3.4-GHz processor.6

A moment selection critical value that utilizes a data-dependent tuning pa-
rameter κ̂ and size-correction factor η̂ (both of which may depend on θ) is re-
ferred to as a refined moment selection (RMS) critical value. Our recommended
RMS critical value is

cn(θ) = cn(θ� κ̂)+ η̂�(2.5)

5The constant ε = �012 was determined numerically based on an average asymptotic power
criterion. See Section S6.2 of the Supplemental Material for details.

6In our experience, the GAUSS 9.0 quadratic programming procedure qprog is much faster
than the Matlab 7 procedure quadprog.
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where cn(θ� κ̂) is the 1 − α quantile of a bootstrap (or “asymptotic normal”)
distribution of a moment selection version of TAQLR�n(θ) and η̂ is a data-
dependent size-correction factor. For i.i.d. data, we recommend using a non-
parametric bootstrap version of cn(θ� κ̂)� For dependent data, either a block
bootstrap or an asymptotic normal version can be applied.

We now describe the bootstrap version of cn(θ� κ̂)� Let {W ∗
i�r : i ≤ n} for

r = 1� � � � �R denote R bootstrap samples of size n (i.i.d. across samples), such
as nonparametric i.i.d. bootstrap samples in an i.i.d. scenario or block boot-
strap samples in a time series scenario, where R is large. Define the bootstrap
variance matrix estimator Σ̂∗

n�r(θ) as Σ̂n(θ) is defined (e.g., as in (2.4) in the
i.i.d. case) with {W ∗

i�r : i ≤ n} in place of {Wi : i ≤ n} throughout.7 The p-vectors
of recentered bootstrap sample moments and p×p bootstrap weight matrices
for r = 1� � � � �R are defined by

m∗
n�r(θ) = n1/2

(
m∗

n�r(θ)−mn(θ)
)
�(2.6)

Σ̃∗
n�r(θ) = Σ̂∗

n�r(θ)+ max
{
ε− det

(
Ω̂∗

n�r(θ)
)
�0

}
D̂∗

n�r(θ)� where

ε = �012�

D̂∗
n�r(θ) = Diag

(
Σ̂∗

n�r(θ)
)
�

Ω̂∗
n�r(θ) = D̂∗

n�r(θ)
−1/2Σ̂∗

n�r(θ)D̂
∗
n�r(θ)

−1/2�

The idea behind the RMS critical value is to compute the critical value using
only those moment inequalities that have a noticeable effect on the asymp-
totic null distribution of the test statistic. Note that moment inequalities that
have large positive population means have little or no effect on the asymptotic
null distribution. Our preferred RMS procedure employs element-by-element
t-tests of the null hypothesis that the mean of mn�j(θ) is zero versus the alterna-
tive that it is positive for j = 1� � � � �p� The jth moment inequality is selected if

n1/2mn�j(θ)

σ̂n�j(θ)
≤ κ̂�(2.7)

where σ̂2
n�j(θ) is the (j� j) element of Σ̂n(θ) for j = 1� � � � �p and κ̂ is a data-

dependent tuning parameter (defined in (2.10) below) that plays the role of a
critical value in selecting the moment inequalities. Let p̂ denote the number
of selected moment inequalities.

7Note that when a preliminary consistent estimator of a parameter τ appears, the bootstrap
moment conditions need to be based on a bootstrap estimator of this preliminary estimator. In
such cases, the asymptotic normal version of the critical value may be much quicker to compute.
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For r = 1� � � � �R� let m∗
n�r(θ� p̂) denote the p̂-subvector of m∗

n�r(θ) that in-
cludes the p̂ selected moment inequalities, where p̂ may depend on θ.8�9 Anal-
ogously, let Σ̂∗

n�r(θ� p̂) denote the p̂× p̂ submatrix of Σ̂∗
n�r(θ) that consists of the

p̂ selected moment inequalities. The bootstrap quantity cn(θ� κ̂) is the 1 − α

sample quantile of

{
S2A

(
m∗

n�r(θ� p̂)� Σ̂
∗
n�r(θ� p̂)

)
: r = 1� � � � �R

}
�(2.8)

where S2A(·� ·) is defined as in (2.3) but with p replaced by p̂�
An “asymptotic normal” version of cn(θ� κ̂) is obtained by replacing the

bootstrap quantities m∗
n�r(θ� p̂) and Σ̂∗

n�r(θ� p̂) in (2.8) by Σ̂1/2
n (θ� p̂)Z∗

r and
Σ̂n(θ� p̂)� respectively, where Σ̂n(θ� p̂) denotes the p̂ × p̂ submatrix of Σ̂n(θ)
that consists of the p̂ selected moment inequalities, Z∗

r ∼ i�i�d� N(0p̂� Ip̂) for
r = 1� � � � �R� and {Z∗

r : r = 1� � � � �R} are independent of {Wi : i ≤ n} conditional
on p̂�

The tuning parameter κ̂ in (2.7) and the size-correction factor η̂ in (2.5)
depend on the estimator Ω̂n(θ) of the asymptotic correlation matrix Ω(θ) of
n1/2mn(θ)� In particular, they depend on Ω̂n(θ) through a [−1�1]-valued func-
tion δ(Ω̂n(θ)) that is a measure of the amount of negative dependence in the
correlation matrix Ω̂n(θ)� We define

δ(Ω)= smallest off-diagonal element of Ω�(2.9)

where Ω is a p×p correlation matrix. The moment selection tuning parameter
κ̂ and the size-correction factor η̂ are defined by

κ̂= κ
(
δ̂n(θ)

)
and η̂ = η1

(
δ̂n(θ)

) +η2(p)�(2.10)

where δ̂n(θ) = δ
(
Ω̂n(θ)

)
�

This data-dependent method of selecting κ and η is referred to as the κauto
method.

Table I provides values of κ(δ)� η1(δ)� and η2(p) for δ ∈ [−1�1] and
p ∈ {2�3� � � � �10} for tests with level α = �05 and CS’s with level 1 − α = �95�
Section S6.9 of the Supplemental Material provides simulated values of the
mean and standard deviation of the asymptotic distribution of cn(θ� κ̂)� These
results, combined with the values of η1(δ) and η2(p) in Table I, show that the

8Note that m∗
n�r(θ� p̂) depends not only on the number of moments selected, p̂� but on which

moments are selected. For simplicity, this is suppressed in the notation.
9By definition, p̂ ≥ 1� that is, at least one moment must be selected. For specificity, m∗

n�r(θ� p̂)
equals the last element of m∗

n�r(θ) if no moments are selected via (2.7).
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TABLE I

MOMENT SELECTION TUNING PARAMETERS κ(δ) AND SIZE-CORRECTION FACTORS η1(δ) AND
η2(p) FOR α = �05a

δ κ(δ) η1(δ) δ κ(δ) η1(δ) δ κ(δ) η1(δ)

[−1�−�975) 2�9 �025 [−�30�−�25) 2�1 �111 [�45� �50) 0�8 �023
[−�975�−�95) 2�9 �026 [−�25�−�20) 2�1 �082 [�50� �55) 0�6 �033
[−�95�−�90) 2�9 �021 [−�20�−�15) 2�0 �083 [�55� �60) 0�6 �013
[−�90�−�85) 2�8 �027 [−�15�−�10) 2�0 �074 [�60� �65) 0�4 �016
[−�85�−�80) 2�7 �062 [−�10�−�05) 1�9 �082 [�65� �70) 0�4 �000
[−�80�−�75) 2�6 �104 [−�05� �00) 1�8 �075 [�70� �75) 0�2 �003
[−�75�−�70) 2�6 �103 [�00� �05) 1�5 �114 [�75� �80) 0�0 �002
[−�70�−�65) 2�5 �131 [�05� �10) 1�4 �112 [�80� �85) 0�0 �000
[−�65�−�60) 2�5 �122 [�10� �15) 1�4 �083 [�85� �90) 0�0 �000
[−�60�−�55) 2�5 �113 [�15� �20) 1�3 �089 [�90� �95) 0�0 �000
[−�55�−�50) 2�5 �104 [�20� �25) 1�3 �058 [�95� �975) 0�0 �000
[−�50�−�45) 2�4 �124 [�25� �30) 1�2 �055 [�975� �99) 0�0 �000
[−�45�−�40) 2�2 �158 [�30� �35) 1�1 �044 [�99�1�0] 0�0 �000
[−�40�−�35) 2�2 �133 [�35� �40) 1�0 �040
[−�35�−�30) 2�1 �138 [�40� �45) 0�8 �051

p 2 3 4 5 6 7 8 9 10

η2(p) �00 �15 �17 �24 �31 �33 �37 �45 �50

aThe values in this table are obtained by simulating asymptotic formulae using 40,000 critical-value and 40,000
rejection-probability simulation repetitions; see Section S7.5 of the Supplemental Material for details.

size-correction factor η̂ typically is small compared to cn(θ� κ̂)� but not negli-
gible.10

Computation of the η2(p) values given in Table I by simulation is not easy
because it requires computing the (asymptotic) maximum null rejection prob-
ability (MNRP) over a large number of null mean vectors μ and correlation
matrices Ω� For this reason, we provide η2(p) values only for p ≤ 10� For the
correlation matrices, we consider both a fixed grid and randomly generated
matrices; see Sections S7.5 and S7.6 of the Supplemental Material for details.
For the null mean vectors μ ∈ R

p
+�∞� computation of the η2(p) values is car-

ried out initially for mean vectors that consist only of 0’s and ∞’s. Then the
differences are computed between the values obtained by maximization over
such μ vectors and the values obtained by maximization over μ vectors that lie
in (i) a fixed full grid, (ii) two partial grids, and (iii) 1000 or 100,000 randomly
generated μ vectors (depending on the variance matrix). The differences are
found to be �0000 in most cases and small (≤�0026) in all cases; see Section

10For example, for p = 10� Ω = I10� five moment inequalities binding, and five moment in-
equalities completely slack, the mean and standard deviation of the asymptotic distribution of
cn(θ� κ̂) are 7�2 and �57� respectively, whereas the size-correction factor is �614�
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S7.6 of the Supplemental Material for details. These results indicate, although
do not establish unequivocally, that the maxima over μ ∈ R

p
+�∞ are obtained at

μ vectors that consist only of 0’s and ∞’s.
In sum, the preferred RMS critical value, cn(θ)� and CS are computed us-

ing the following steps. One computes (i) Ω̂n(θ) defined in (2.3) and (2.4),
(ii) δ̂n(θ) = smallest off-diagonal element of Ω̂n(θ)� (iii) κ̂ = κ(δ̂n(θ)) using
Table I, (iv) η̂= η1(δ̂n(θ))+η2(p) using Table I, (v) the vector of selected mo-
ments using (2.7), (vi) the selected recentered bootstrap sample moments, co-
variance matrices, and weight matrices {(m∗

n�r(θ� p̂)� Σ̂
∗
n�r(θ� p̂)� Σ̃

∗
n�r(θ� p̂)) : r =

1� � � � �R}� defined in (2.6) with the nonselected moment inequalities omit-
ted, (vii) cn(θ� κ̂)� which is the �95 sample quantile of {S2A(m

∗
n�r(θ� p̂)�

Σ̂∗
n�r(θ� p̂)) : r = 1� � � � �R} (for a test of level �05 and a CS of level �95), and

(viii) cn(θ) = cn(θ� κ̂) + η̂� The preferred RMS confidence set is computed by
determining all the values θ for which the null hypothesis that θ is the true
value is not rejected. For the asymptotic normal version of the recommended
RMS critical value, in step (vi) one computes the selected subvector and sub-
matrix of Σ̂1/2

n (θ� p̂)Z∗
r and Σ̂n(θ� p̂)� defined in the paragraph following (2.8),

and in step (vii) one computes the �95 sample quantile with these quantities in
place of m∗

n�r(θ� p̂) and Σ̂∗
n�r(θ� p̂)� respectively.

To compute the recommended bootstrap RMS test using 10,000 bootstrap
repetitions takes �34� �39� and �86 seconds when p = 2� 4� and 10� respec-
tively, and n = 250 using GAUSS on a PC with a 3.2-GHz processor. For the
asymptotic normal version, the times are �08� �09� and �16 seconds.

When constructing a CS, if the computation time is burdensome (because
one needs to carry out many tests with different values of θ as the null value),
then a useful approach is to map out the general features of the CS using the
asymptotic normal version of the MMM/t-test/κ = 2�35 test, which is extremely
fast to compute, and then switch to the bootstrap version of the recommended
RMS test to find the boundaries of the CS more precisely.11

3. TEST STATISTICS AND CRITICAL VALUES

We now describe the justification for the recommended RMS test. Details
are given in Sections S4 and S5 of the Supplemental Material. The test statistics

11The asymptotic normal version of the MMM/t-test/κ= 2�35 test is defined just as the recom-
mended RMS test is defined, but with (S1�κ = 2�35�η = 0) in place of (S2A� κ̂� η̂)� respectively,
where S1 is defined in (3.2), and with the bootstrap replaced by the normal asymptotic distribu-
tion. The bootstrap version of this test is much slower to compute than the asymptotic normal
version and, hence, we do not recommend that it be used for this purpose. The computation
times for the asymptotic normal version of the MMM/t-test/κ = 2�35 test using 10,000 critical-
value simulations are �003� �004� and �009 seconds when p= 2�4� and 10� respectively.
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Tn(θ) that we consider are of the form

Tn(θ) = S
(
n1/2mn(θ)� Σ̂n(θ)

)
�(3.1)

where S is a real function on (R ∪ {+∞})p × V and V is the space of p ×
p variance matrices. The leading examples of S are the AQLR function S2A

defined above, the QLR function S2� which is the same as S2A in (2.3) but with
ε = 0 (and hence Σ̃n(θ) = Σ̂n(θ)), the modified method of moments (MMM)
function S1� and the SumMax function S3:

S1(m�Σ)=
p∑

j=1

[mj/σj]2
− and S3(m�Σ)=

p1∑
j=1

[m(j)/σ(j)]2
−�(3.2)

where [x]− = min{x�0}� m = (m1� � � � �mp)
′� σ2

j is the jth diagonal element
of Σ� [m(j)/σ(j)]2

− denotes the jth largest value among {[m�/σ�]2
− :�= 1� � � � �p}�

and p1 <p is some specified integer.12–14 The MMM statistic S1 has been used
by Pakes, Porter, Ho, and Ishii (2004), Hansen (2005), CHT, Fan and Park
(2007), Romano and Shaikh (2008), AG, AS, and Bugni (2010); the (unad-
justed) QLR statistic has been used by AG, AS, and Rosen (2008); and the Max
and SumMax statistics S3 have been used by AG, AS, and Azeem Shaikh.15

We consider the class of GMS critical values discussed in AS. They rely on a
tuning parameter κ and moment selection functions ϕj : (R ∪ {+∞})p ×Ψ →
R+�∞ for j ≤ p� where Ψ is the set of all p×p correlation matrices. The leading
examples of ϕj are

ϕ(1)
j (ξ�Ω) =

{
0� if ξj ≤ 1,
∞� if ξj > 1,(3.3)

ϕ(2)
j (ξ�Ω) = [

κ(ξj − 1)
]
+� ϕ(3)

j (ξ�Ω) = [ξj]+�
ϕ(4)

j (ξ�Ω) = κξj1(ξj > 1)� and ϕ(0)
j (ξ�Ω) = 0

for j ≤ p� where [x]+ = max{x�0}� ξ = (ξ1� � � � � ξp)
′� Ω is a p × p correla-

tion matrix, and κ in ϕ(2)
j and ϕ(4)

j is the tuning parameter κ� Let ϕ(ξ�Ω) =
(ϕ1(ξ�Ω)� � � � �ϕp(ξ�Ω))′ (for any ϕj(ξ�Ω) as in (3.3)). CHT, AS, and Bugni
(2010) consider the function ϕ(1); Hansen (2005) and Canay (2010) consider

12When constructing a CS, a natural choice for p1 is the dimension d of θ; see the discussion
following (3.5) below.

13With the functions S1� S2A� and S3� there is no restriction on the parameter space for the
variance matrix Σ of the moment conditions: Σ can be singular.

14Several papers in the literature use a variant of S1 that is not invariant to rescaling of the
moment functions (i.e., with σj = 1 for all j). This is not desirable in terms of the power of the
resulting test.

15Personal communication.
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ϕ(2); AS consider ϕ(3); and Fan and Park (2007) use a non-scale-invariant ver-
sion of ϕ(4)�16

The function ϕ(1) generates the recommended “moment selection t-test”
procedure of (2.7); see Section S4.2 of the Supplemental Material for details.
The function ϕ(0) generates a critical value based on the least favorable dis-
tribution (for which all moment inequalities are binding) evaluated at an esti-
mator of the true variance matrix Σ� It depends only on the data through the
estimation of Σ� It is referred to as the plug-in asymptotic (PA) critical value.
(No value κ is needed for this critical value.)

Another ϕ function is the modified moment selection criterion (MMSC)
ϕ(5) function introduced in AS. It is computationally more expensive than the
functions ϕ(1)–ϕ(4) considered above, but uses all of the information in the
p-vector of moment conditions to decide which moments to select. It is a one-
sided version of the information-criterion-based moment selection criterion
considered in Andrews (1999). For brevity, we do not define ϕ(5) here, but we
consider it below.

For a GMS critical value as in AS, {κ = κn :n ≥ 1} is a sequence of con-
stants that diverges to infinity as n → ∞� such as κn = (lnn)1/2� In contrast,
for an RMS critical value, κ̂ does not go to infinity as n → ∞ and is data-
dependent. Data dependence of κ̂ is obtained by taking κ̂ to depend on Ω̂n(θ):
κ̂ = κ(Ω̂n(θ))� where κ(Ω) is an R++-valued function. We justify RMS critical
values using asymptotics in which κ equals a finite constant plus op(1)� rather
than asymptotics in which κ → ∞ as n → ∞� This differs from the asymp-
totics in other papers in the moment inequality literature. Under asymptotics
for which κ � ∞ as n → ∞� RMS critical values require size correction via a
(data-dependent) quantity η̂ = η(Ω̂n(θ))� where η(Ω) is an R+-valued func-
tion.

There are four reasons for using finite-κ asymptotics. First, they provide
better approximations because κ is finite, not infinite, in any given applica-
tion. Second, for any given (S�ϕ)� they allow one to compute a best κ value
in terms of asymptotic average power, which in turn allows one to compare
different (S�ϕ) functions (each evaluated at its own best κ value) in terms of
asymptotic average power. One cannot determine a best κ value in terms of
asymptotic average power when κ → ∞ because asymptotic power is always
higher if κ is smaller, asymptotic size does not depend on κ� and finite-sample
size is worse if κ is smaller.17 Third, for the recommended (S�ϕ) functions,

16Hansen’s (2005) test is developed in the context of testing for a model’s superior predictive
ability. The structure of the latter testing problem is analogous to the testing problem considered
here. In consequence, the recommended test in this paper also can be used to test for a model’s
superior predictive ability and it provides a data-dependent tuning parameter for that testing
problem (that is chosen to maximize an average power criterion).

17This does not imply that one cannot size-correct a test and then consider the κ→ ∞ asymp-
totic properties of such a test. Rather, the point is that κ → ∞ asymptotics do not allow one to
determine a suitable formula for size correction for the reason given.
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the finite-κ asymptotic formula for the best κ value lets one determine a data-
dependent κ value that is approximately optimal in terms of asymptotic aver-
age power. Fourth, finite-κ asymptotics permit one to compute size-correction
factors that depend on κ� which is a primary determinant of a test’s finite-
sample size. In contrast, if κ→ ∞, the asymptotic properties of tests under the
null hypothesis do not depend on κ� Even the higher order errors in null re-
jection probabilities do not depend on κ; see Bugni (2010). Thus, with κ → ∞
asymptotics, the determination of a desirable size-correction factor based on κ
is not possible.

For brevity, the finite-κ asymptotic results are given in Sections S5 and S9
of the Supplemental Material. These results include uniform asymptotic size
and n−1/2 local power results. We use these results to compare different (S�ϕ)
functions below and to develop recommended κ̂ and η̂ values.

For Z∗ ∼ N(0p� Ip) and β ∈ (R ∪ {+∞})p� let qS(β�Ω) denote the 1 − α
quantile of S(Ω1/2Z∗ +β�Ω)� For constants κ > 0 and η≥ 0� define

AsyPow(μ�Ω�S�ϕ�κ�η)(3.4)

= P
[
S
(
Ω1/2Z∗ +μ�Ω

)
> qS

(
ϕ

(
κ−1

[
Ω1/2Z∗ +μ

]
�Ω

)
�Ω

) +η
]
�

where μ ∈ (R ∪ {+∞})p and Ω ∈ Ψ� The asymptotic power of an RMS test
of the null hypothesis that the true value is θ� based on (S�ϕ) with data-
dependent κ̂ = κ(Ω̂n(θ))� and η̂ = η(Ω̂n(θ))� is shown in Section S5.2 of
the Supplemental Material to be AsyPow(μ�Ω(θ)�S�ϕ�κ(Ω(θ))�η(Ω(θ)))�
where μ is a p-vector whose elements depend on the limits (as n → ∞) of the
normalized population means of the p moment inequalities and Ω(θ) is the
population correlation matrix of the moment functions evaluated at the null
value θ�

We compare the power of different RMS tests by comparing their asymptotic
average power for a chosen set Mp(Ω) of alternative parameter vectors μ ∈
Rp for a given correlation matrix Ω� The asymptotic average power of the RMS
test based on (S�ϕ�κ�η) for constants κ> 0 and η≥ 0 is∣∣Mp(Ω)

∣∣−1 ∑
μ∈Mp(Ω)

AsyPow(μ�Ω�S�ϕ�κ�η)�(3.5)

where |Mp(Ω)| denotes the number of elements in Mp(Ω)�
We are interested in constructing tests that yield CS’s that are as small as

possible. The boundary of a CS, like the boundary of the identified set, is de-
termined at any given point by the moment inequalities that are binding at
that point. The number of binding moment inequalities at a point depends on
the dimension, d� of the parameter θ� Typically, the boundary of a confidence
set is determined by d (or fewer) moment inequalities; that is, at most d mo-
ment inequalities are binding and at least p− d are slack. In consequence, we
specify the sets Mp(Ω) considered below to be ones for which most vectors
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μ have half or more elements positive (since positive elements correspond to
nonbinding inequalities), which is suitable for the typical case in which p ≥ 2d�

To compare (S�ϕ) functions based on asymptotic Mp(Ω) average power re-
quires choices of functions (κ(·)�η(·))� We use the functions κ∗(Ω) and η∗(Ω)
that are optimal in terms of maximizing asymptotic Mp(Ω) average power.
These are determined numerically; see Section S7.4 of the Supplemental Ma-
terial for details. Given Ω� κ∗(Ω)� and η∗(Ω)� we compare (S�ϕ) functions
by comparing their values of the quantity in (3.5) evaluated at κ = κ∗(Ω)� and
η= η∗(Ω)�

Once we have determined a recommended (S�ϕ)� we determine data-
dependent values κ̂ and η̂ that are suitable for use with this (S�ϕ) combi-
nation.

Note that generalized empirical likelihood (GEL) test statistics, including
the ELR statistic, behave the same asymptotically (to the first order) as the
(unadjusted) QLR statistic Tn(θ) based on S2 under the null and local alterna-
tive hypotheses for nonsingular correlation matrices of the moment conditions.
See Sections 8.1 and 10.3 of AG, Section 10.1 of AS, and Canay (2010). In con-
sequence, although GEL statistics are not of the form given in (3.1), the asymp-
totic results of the present paper, given in Section S5 of the Supplemental Ma-
terial, hold for such statistics under the assumptions given in AG for classes
of moment condition correlation matrices whose determinants are bounded
away from zero. Hence, in the latter case, the recommended κ̂ and η̂ values
given in Table I can be used with GEL statistics. However, an advantage of the
AQLR statistic in comparison to GEL statistics is that its asymptotic properties
are known and well behaved whether or not the moment condition correlation
matrix is singular. There are also substantial computational reasons to prefer
the AQLR statistic to GEL statistics such as ELR; see Section 6 below.

4. ASYMPTOTIC AVERAGE POWER COMPARISONS

In the numerical work reported here, we focus on results for p = 2�4� and
10� For each value of p� we consider three correlation matrices Ω: ΩNeg� ΩZero�
and ΩPos� The matrix ΩZero equals Ip for p = 2�4� and 10� The matrices ΩNeg

and ΩPos are Toeplitz matrices with correlations on the diagonals (as they go
away from the main diagonal) given by the following descriptions: For p = 2,
ρ= −�9 for ΩNeg and ρ= �5 for ΩPos; for p = 4, ρ= (−�9� �7�−�5) for ΩNeg and
ρ = (�9� �7� �5) for ΩPos; for p = 10, ρ = (−�9� �8�−�7� �6�−�5� �4�−�3� �2�−�1)
for ΩNeg and ρ= (�9� �8� �7� �6� �5� � � � � �5) for ΩPos�

For p= 2� the set of μ vectors M2(Ω) for which asymptotic average power is
computed includes seven elements: M2(Ω) = {(−μ1�0)� (−μ2�1)� (−μ3�2)�
(−μ4�3)� (−μ5�4)� (−μ6�7)� (−μ7�−μ7)}� where μj depends on Ω and is
such that the power envelope is �75 at each element of M2(Ω)� Consistent
with the discussion in Section 3, most elements of M2(Ω) have less than two
negative elements. The positive elements of the μ vectors are chosen to cover
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a reasonable range of the parameter space. For brevity, the values of μj in
M2(Ω) and the sets Mp(Ω) for p = 4�10 are given in Section S7.1 of the
Supplemental Material. The elements of Mp(Ω) for p = 4�10 are selected
such that the power envelope is �80 and �85� respectively, at each element of
the set.

In Section S6.3 of the Supplemental Material, we also provide results for
two singular Ω matrices and 19 nonsingular Ω matrices (for each p) that cover
a grid of δ(Ω) values from −1�0 to 1�0� The qualitative results reported here
are found to apply as well to the broader range of Ω matrices. Some special
features of the results based on the singular variance matrices are commented
on below.

We compare tests based on the functions (S�ϕ) = (MMM�PA)� (MMM�
t-test)� (Max�PA)� (Max� t-test)� (SumMax�PA)� (SumMax� t-test)� (AQLR�
PA)� (AQLR� t-test)� (AQLR�ϕ(3))� (AQLR�ϕ(4)), and (AQLR�MMSC).18

We also consider the “pure ELR” test, for which Canay (2010) established
a large deviation asymptotic optimality result. This test rejects the null when
the ELR statistic exceeds a fixed constant (that is the same for all Ω).19 The
reason for reporting results for this test is to show that these asymptotic opti-
mality results do not provide theoretical grounds for favoring the ELR test or
ELR test statistic over other tests or test statistics.

For each test, Table II reports the asymptotic average power given the κ
value that maximizes asymptotic average power for the test, denoted κ = best.
The best κ values are determined numerically using grid search; see Sec-
tion S7.4 of the Supplemental Material for details. For all tests and p =
2�4�10� the best κ values are decreasing from ΩNeg to ΩZero to ΩPos� For ex-
ample, for the AQLR/t-test test, the best κ values for (ΩNeg�ΩZero�ΩPos) are
(2�5�1�4� �6) for p= 10� (2�5�1�4� �8) for p= 4� and (2�6�1�7� �6) for p= 2�

The asymptotic power results are size-corrected.20�21 The critical values, size-
correction factors, and power results are each calculated using 40,000 simula-

18The statistics MMM, AQLR, Max, and SumMax use the functions S1� S2� S3 with p1 = 1�
and S3 with p1 = 2� respectively. The PA, t-test, and MMSC critical values use the functions ϕ(0)�
ϕ(1)� and ϕ(5)� respectively.

19The level �05 pure ELR asymptotic critical value is determined numerically by calculating the
constant for which the maximum asymptotic null rejection probability of the ELR statistic over
all mean vectors in the null hypothesis and over all positive definite correlation matrices Ω is �05�
See Section S6.3.3 of the Supplemental Material for details. The critical values are found to be
5�07� 7�99� and 16�2 for p= 2� 4� and 10� respectively. These critical values yield asymptotic null
rejection probabilities of �05 when Ω contains elements that are close to −1�0�

20Size correction here is done for the fixed known value of Ω� It is not based on the least
favorable Ω matrix because the results are asymptotic and Ω can be estimated consistently.

21The maximum null rejection probability calculations used in the size correction were calcu-
lated using μ vectors that consist of 0’s and ∞’s. Then additional calculations were carried out
to determine whether the maximum over μ ∈ R

p
+�∞ is attained at such a μ vector in each case.

No evidence was found to suggest otherwise. See Sections S7.5 and S7.6 of the Supplemental
Material for details.
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TABLE II

ASYMPTOTIC AVERAGE POWER COMPARISONS (SIZE-CORRECTED)a

Critical
Value

Tuning
Param. κ

p= 10 p = 4 p = 2

Statistic ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

MMM PA — �04 �36 �34 �20 �53 �45 �48 �62 �59
MMM t-test Best �18 �67 �79 �31 �69 �76 �51 �69 �72

Max PA — �19 �44 �70 �30 �57 �71 �48 �64 �66
Max t-test Best �25 �58 �82 �35 �66 �78 �51 �69 �72

SumMax PA — �10 �43 �62 �20 �55 �60 �48 �62 �59
SumMax t-test Best �20 �65 �81 �31 �69 �77 �51 �69 �72

AQLR PA — �35 �36 �69 �46 �53 �70 �58 �69 �65
AQLR t-test Best .55 .67 .82 .60 .69 .78 .65 .69 .73
AQLR t-test Auto �55 �67 �82 �59 �69 �78 �65 �69 �73

AQLR ϕ(2) Best �51b �65b �81b �60c �69d �78d �66d �69d �72d

AQLR ϕ(3) Best �43b �63b �81b �55c �68d �78d �61d �69d �72d

AQLR ϕ(4) Best �51b �65b �81b �60c �70d �78d �66d �69d �72d

AQLR MMSC Best �56b �66b �81b �63 �69 �78 �65 �69 �73

Power Envelope — �85 �85 �85 �80 �80 �80 �75 �75 �75

aκ = Best denotes the κ value that maximizes asymptotic average power. κ = Auto denotes the data-dependent
method of choosing κ described in (2.9)–(2.10). Unless otherwise noted, all cases are based on (40,000, 40,000, 40,000)
critical-value, size-correction, and power repetitions, respectively.

bResults are based on (1000, 1000, 1000) repetitions.
cResults are based on (2000, 2000, 2000) repetitions.
dResults are based on (5000, 5000, 5000) repetitions.

tion repetitions, except where stated otherwise, which yields a simulation stan-
dard error of �0011 for the power results.

Table II shows that the MMM/PA test has very low asymptotic power com-
pared to the AQLR/t-test/κbest test (which is shown in boldface) especially for
p = 4�10� Similarly, the Max/PA and SumMax/PA tests have low power. The
AQLR/PA test has better power than the other PA tests, but it is still very low
compared to the AQLR/t-test/κbest test.

Table II also shows that the MMM/t-test/κbest test has equal asymptotic av-
erage power to the AQLR/t-test/κbest test for ΩZero and only slightly lower
power for ΩPos� but it has substantially lower power for ΩNeg� For example, for
p= 10� the comparison is �18 versus �55� The Max/t-test/κbest test has notice-
ably lower average power than the AQLR/t-test/κbest test for ΩNeg� slightly
lower power for ΩZero� and essentially equal power for ΩPos� It is strongly
dominated in terms of average power. The SumMax/t-test/κbest test also is
strongly dominated by the AQLR/t-test/κbest test in terms of asymptotic aver-
age power. The power differences between these two tests are especially large
for ΩNeg� For example, for p = 10 and ΩNeg� their powers are �20 and �55� re-
spectively.
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Next we compare tests that use the AQLR test statistic but different criti-
cal values—due to the use of different functions ϕ� The AQLR/ϕ(2)/κbest test
is almost dominated by the AQLR/t-test/κbest, although the differences are
not large. The AQLR/ϕ(3)/κbest test has noticeably lower asymptotic average
power than the AQLR/t-test/κbest test for ΩNeg� somewhat lower power for
ΩZero� and equal power for ΩPos� The differences increase with p�

The AQLR/ϕ(4)/κbest test has almost the same asymptotic average power
as the AQLR/t-test/κbest test for ΩZero and ΩPos, and slightly lower power
for ΩNeg when p = 10. This is because the ϕ(4) and ϕ(1) functions are similar.
The AQLR/MMSC/κbest test and AQLR/t-test/κbest tests have quite similar
power. Nevertheless, the AQLR/MMSC/κbest test is not the recommended
test for reasons given below. We experimented with several smooth versions
of the ϕ(1) critical-value function in conjunction with the AQLR statistic. We
were not able to find any that improved on the asymptotic average power of
the AQLR/t-test/κbest test; some were inferior. All such tests have substantial
disadvantages relative to the AQLR/t-test in terms of the computational ease
of determining suitable data-dependent κ and η values.

In conclusion, we find that the best (S�ϕ) choices in terms of asymptotic
average power (based on κ = best) are AQLR/t-test and AQLR/MMSC, fol-
lowed closely by AQLR/ϕ(2) and AQLR/ϕ(4)� Each of these tests outperforms
the PA tests by a wide margin in terms of asymptotic power.

The AQLR/MMSC test has the following drawbacks: (i) its computation
time is very high when p is large, such as p= 10� because the test statistic must
be computed for all 2p possible combinations of selected moment vectors, and
(ii) the best κ value varies widely with Ω and p� which makes it quite difficult to
specify a data-dependent κ value that performs well. Similarly, the AQLR/ϕ(2)

and AQLR/ϕ(4) tests have substantial computational drawbacks for determin-
ing data-dependent κ values. See Sections S6.4 and S6.7 of the Supplemental
Material for additional numerical results for these tests.

Based on the power results discussed above and on the computational fac-
tors, we take the AQLR/t-test to be the recommended test, and we develop
data-dependent κ̂ and η̂ for this test.

The last row of Table II gives the asymptotic power envelope, which is a
“unidirectional” envelope; see Section S7.3 of the Supplemental Material for
details. One does not expect a test that is designed to perform well for mul-
tidirectional alternatives to be on, or close to, the unidirectional envelope. In
fact, it is surprising how close the AQLR/t-test/κbest test is to the power enve-
lope when Ω = ΩPos� As expected, the larger is p, the greater is the difference
between the power of a test designed for p-directional alternatives and the
unidirectional power envelope.

When the sample correlation matrix is singular, the quasi-likelihood ratio
(QLR) test statistic can be defined using the Moore–Penrose (MP) general-
ized inverse in the definition of the weighting matrix. Let MP-QLR denote this
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statistic. For the case of singular correlation matrices, Section S6.3 of the Sup-
plemental Material provides asymptotic power comparisons of the AQLR/t-
test/κbest test, the MP-QLR/t-test/κbest test, and several other tests.

The results show that the AQLR/t-test/κbest test has vastly superior asymp-
totic average power to that of the MP-QLR/t-test/κbest test (e.g., .98 versus
.29 when p = 10) when the correlation matrix exhibits perfect negative corre-
lation and the same power when only perfect positive correlation is present.
Hence, it is clear that the adjustment made to the QLR statistic is beneficial.
The results also show that the AQLR/t-test/κbest test strongly dominates tests
based on the MMM and Max statistics in terms of asymptotic average power
with singular correlation matrices.

Finally, results for the pure ELR test show that it has very poor asymptotic
power properties.22 For example, for p = 10� its power ranges from 1/3 to 1/7
that of the AQLR/t-test/κbest test (and of the feasible AQLR/t-test/κauto test,
which is the recommended test of Section 2). The poor power properties of this
“asymptotically optimal” test imply that the (generalized Neyman–Pearson)
large-deviation asymptotic optimality criterion is not a suitable criterion in this
context.23

Note that the poor power of the pure ELR test does not imply that the ELR
test statistic is a poor choice of test statistic. When combined with a good criti-
cal value, such as the data-dependent critical value recommended in this paper
or a similar critical value, it yields a test with very good power. The point is
that the large-deviation asymptotic optimality result does not provide convinc-
ing evidence in favor of the ELR statistic.

5. APPROXIMATELY OPTIMAL κ(Ω) AND η(Ω) FUNCTIONS

Next, we describe how the recommended κ(Ω) and η(Ω) functions for the
AQLR/t-test test are determined.

First, for p = 2 and given ρ ∈ (−1�1)� where ρ denotes the correlation
that appears in Ω� we compute numerically the values of κ that maximize the
asymptotic average (size-corrected) power of the nominal �05 AQLR/t-test test
over a fine grid of 31 κ values. We do this for each ρ in a fine grid of 43 values.
Because the power results are size-corrected, a by-product of determining the

22The power of the pure ELR test and AQLR/t-test/κauto test, which is the recommended
test of Section 2, in the nine cases considered in Table II are for p = 10� (�19� �55)� (�17� �67),
and (�12� �82); for p = 4� (�44� �59)� (�42� �69)� (�39� �78); and for p = 2� (�57� �65)� (�55� �69), and
(�54� �73). See Table S-XIII of the Supplemental Material.

23In our view, the large-deviation asymptotic optimality criterion is not appropriate when com-
paring tests with substantially different asymptotic properties under nonlarge deviations. In par-
ticular, this criterion is questionable when the alternative hypothesis is multidimensional because
it implies that a test can be “optimal” against alternatives in all directions, which is incompatible
with the finite-sample and local asymptotic behavior of tests in most contexts.
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best κ value for each ρ value is the size-correction value η that yields asymp-
totically correct size for each ρ�

Second, by a combination of intuition and the analysis of numerical results,
we postulate that for p ≥ 3, the optimal function κ∗(Ω) is well approximated
by a function that depends on Ω only through the [−1�1]-valued function δ(Ω)
defined in (2.9).

The explanation for this is as follows: (i) Given Ω� the value κ∗(Ω) that
yields maximum asymptotic average power is such that the size-correction
value η∗(Ω) is not very large. (This is established numerically for a variety
of p and Ω�) The reason is that the larger is η∗(Ω)� the larger is the fraction,
η∗(Ω)/(cn(θ�κ

∗(Ω)) + η∗(Ω)), of the critical value that does not depend on
the data (for Ω known), the closer is the critical value to the PA critical value
that does not depend on the data at all (for known Ω), and the lower is the
power of the test for μ vectors that have less than p elements negative and
some elements strictly positive. (ii) The size-correction value η∗(Ω) is small if
the rejection probability at the least favorable null vector μ is close to α when
using the size-correction factor η(Ω) = 0� (This is self-evident.) (iii) We pos-
tulate that null vectors μ that have two elements equal to zero and the rest
equal to infinity are nearly least favorable null vectors.24 If true, then the size
of the AQLR/t-test test depends on the two-dimensional submatrices of Ω that
are the correlation matrices for the cases where only two moment conditions
appear. (iv) The size of a test for given κ and p = 2 is decreasing in the corre-
lation ρ� In consequence, the least favorable two-dimensional submatrix of Ω
is the one with the smallest correlation. Hence, the value of κ that makes the
size of the test equal to α for a small value of η is (approximately) a function of
Ω through δ(Ω) defined in (2.9). (Note that this is just a heuristic explanation.
It is not intended to be a proof.)

Next, because δ(Ω) corresponds to a particular 2 × 2 submatrix of Ω with
correlation δ (= δ(Ω)), we take κ(Ω) to be the value that maximizes asymp-
totic average power when p= 2 and ρ= δ� as specified in Table I and described
in the second paragraph of this section. We take η(Ω) to be the value deter-
mined by p = 2 and δ� that is, η1(δ) in (2.10) and Table I, but allow for an
adjustment that depends on p (viz., η2(p)) that is defined to guarantee that
the test has correct asymptotic significance level (up to numerical error). See
Sections S6.1 and S7.4 of the Supplemental Material for details.

We refer to the proposed method of selecting κ(Ω) and η(Ω)� described in
Section 2, as the κauto method. We examine numerically how well the κauto

24The reason for this postulation is that a test with given κ has larger null rejection probability
the more negative are the correlations between the moments. A variance matrix with dimensions
3 × 3 or greater has restrictions on its correlations that are imposed by the positive semidefi-
niteness property. If all of the correlations are equal, they cannot be arbitrarily close to −1� In
contrast, with a two-dimensional variance matrix, the correlation can be arbitrarily close to −1�
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method does in approximating the best κ (viz., κ∗(Ω)).25 We provide four
groups of results and consider p= 2�4�10 for each group. The first group con-
sists of the three Ω matrices considered in Table II. The rows of Table II for the
AQLR/t-test/κbest and AQLR/t-test/κauto tests show that the κauto method
works very well. It has the same asymptotic average power as the AQLR/t-
test/κbest test for all p and Ω values except one case where the difference is
just �01�

The second group consists of a set of 19 Ω matrices for which δ(Ω) takes
values on a grid in [−�99� �99]� In 53 of the 57 (= 3×19) cases, the difference in
asymptotic average power of the AQLR/t-test/κbest and AQLR/t-test/κauto
tests is less than �01�

The third group consists of two singular Ω matrices: one with perfect nega-
tive and positive correlations, and the other with perfect positive correlations.
The AQLR/t-test/κauto test has the same asymptotic average power as the
AQLR/t-test/κbest test for three (p�Ω) combinations, power that is lower by
�01 for two combinations, and power that is lower by �02 for one combination.

The fourth group consists of 500 randomly generated Ω matrices for p = 2�4
and 250 randomly generated Ω matrices for p = 10� For p = 2� across the
500 Ω matrices, the asymptotic average power differences have average equal
to �0010� standard deviation equal to �0032� and range equal to [�000� �022]�
For p = 4� across the 500 Ω matrices, the average power difference is �0012�
the standard deviation is �0016� and the range is [�000� �010]� For p = 10� across
the 250 Ω matrices, the average power differences have average equal to �0183�
standard deviation equal to �0069� and range equal to [�000� �037]�

In conclusion, the κauto method performs very well in terms of selecting κ
values that maximize the asymptotic average power.

6. FINITE-SAMPLE RESULTS

The recommended RMS test, AQLR/t-test/κauto, can be implemented in
finite samples via the asymptotic normal and the bootstrap versions of the t-
test/κauto critical value. Here we determine which of these two methods per-
forms better in finite samples. We also compare these tests to the bootstrap
version of the ELR/t-test/κauto test, which has the same first-order asymptotic
properties as the AQLR-based tests (for correlation matrices whose determi-
nants are bounded away from zero by ε = �012 or more). See Section S6.3.3 of
the Supplemental Material for the definition of the ELR statistic and details
of its computation.

In short, we find that the bootstrap version (denoted Bt in Table III) of the
AQLR/t-test/κauto test performs better than the asymptotic normal version
(denoted Nm) in terms of the closeness of its null rejection probabilities to its

25For brevity, details of the numerical results are given in Section S6.1.2 of the Supplemental
Material.
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TABLE III

FINITE-SAMPLE MAXIMUM NULL REJECTION PROBABILITIES AND (SIZE-CORRECTED)
AVERAGE POWER OF NOMINAL .05 TESTSa

p= 10 p = 4 p= 2

Test Distribution H0/H1 ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

AQLR/Nm N(0�1) H0 .088 .092 .057 .065 .062 .049 .056 .058 .053
AQLR/Bt N(0�1) H0 .061 .062 .058 .053 .056 .049 .054 .053 .052
ELR/Bt N(0�1) H0 .075 .076 .073 .059 .065 .054 .055 .058 .053

AQLR/Nm t3 H0 .059 .067 .045 .050 .049 .047 .053 .047 .046
AQLR/Bt t3 H0 .043 .055 .055 .051 .058 .052 .057 .055 .056
ELR/Bt t3 H0 .059 .072 .072 .056 .067 .058 .057 .057 .055

AQLR/Nm χ2
3 H0 .136 .153 .068 .093 .101 .062 .085 .087 .080

AQLR/Bt χ2
3 H0 .062 .066 .057 .050 .055 .050 .054 .053 .056

ELR/Bt χ2
3 H0 .068 .077 .065 .054 .061 .054 .053 .054 .055

AQLR/Nm N(0�1) H1 .45 .59 .78 .54 .63 .76 .63 .68 .71
AQLR/Bt N(0�1) H1 .46 .62 .77 .54 .64 .76 .63 .68 .71
ELR/Bt N(0�1) H1 .49 .61 .76 .56 .64 .75 .63 .68 .71

AQLR/Nm t3 H1 .58 .69 .84 .66 .76 .81 .70 .76 .72
AQLR/Bt t3 H1 .56 .67 .79 .61 .71 .78 .67 .72 .71
ELR/Bt t3 H1 .55 .62 .76 .61 .67 .76 .64 .68 .71

AQLR/Nm χ2
3 H1 .37 .42 .72 .48 .53 .71 .56 .57 .61

AQLR/Bt χ2
3 H1 .43 .51 .72 .53 .57 .70 .57 .59 .62

ELR/Bt χ2
3 H1 .41 .47 .70 .53 .56 .70 .56 .59 .62

aAsymptotic normal critical values are denoted Nm; bootstrap-based critical values are denoted Bt. All of the tests
use t-test/κauto RMS critical values.

nominal level and similarly, on average, in terms of its power. The AQLR boot-
strap test also performs slightly better than the ELR bootstrap test in terms
of power, is noticeably superior in terms of computation time, and is essen-
tially the same (up to simulation error) in terms of null rejection probabili-
ties. In addition, the AQLR bootstrap test is found to perform quite well in
an absolute sense. Its null rejection probabilities are close to its nominal level
and the difference between its finite-sample and asymptotic power is relatively
small.

We provide results for sample size n = 100� We consider the same correla-
tion matrices ΩNeg� ΩZero� and ΩPos as above, and the same numbers of moment
inequalities p = 2� 4� and 10� We take the mean 0 variance Ip random vector
Z† = Var−1/2(m(Wi�θ))(m(Wi�θ)−Em(Wi�θ)) to be i.i.d. across elements and
consider three distributions for the elements: standard normal (i.e., N(0�1)),
t3� and chi-squared with 3 degrees of freedom χ2

3� All of these distributions are
centered and scaled to have mean 0 and variance 1. The power results are size-
corrected based on the true Ω matrix. For p = 2� 4� and 10� we use 5000, 3000,
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and 1000 critical-value and rejection-probability repetitions, respectively, for
the results under the null and under the alternative.26

We note that the finite-sample testing problem for any moment inequality
model fits into the framework above for some correlation matrix Ω and some
distribution of Z†� Hence, the finite-sample results given here provide a level
of generality that usually is lacking with finite-sample simulation results.

The upper part of Table III provides the finite-sample maximum null rejec-
tion probabilities (MNRP’s) of the nominal .05 normal and bootstrap versions
of the AQLR/t-test/κauto test as well the bootstrap version of the ELR/t-
test/κauto test. The MNRP is the maximum rejection probability over mean
vectors μ in the null hypothesis for a given correlation matrix Ω and a given
distribution of Z†� The lower part of Table III provides MNRP-corrected finite-
sample average power for the same three tests. The average power results are
for the same mean vectors μ in the alternative hypothesis as considered above
for asymptotic power.

Table III shows that the AQLR/t-test/κauto bootstrap test performs well
with MNRP’s in the range of [�043� �066]� In contrast, the AQLR normal test
overrejects somewhat for some Ω matrices with the normal and t3 distributions
for which its MNRP’s are in the range of [�045� �092]� With the skewed distri-
bution, χ2

3� the AQLR normal test overrejects the null hypothesis substantially
with its MNRP’s being in the range [�068� �153]� The fact that overrejection is
largest for a skewed distribution is not surprising, because the first term in the
Edgeworth expansion of a sample average is a skewness term and the statistics
considered here are simple functions of sample averages.

The ELR bootstrap test performs similarly to the AQLR bootstrap test in
terms of null rejection probabilities. Its average amount of overrejection over
the 27 cases is �012� whereas it is �005 for the AQLR bootstrap test.

For the N(0�1), t� and χ2
3 distributions, Table III shows that the AQLR boot-

strap test has finite-sample average power compared to the AQLR normal test
that is similar, inferior, and superior, respectively.

The ELR bootstrap test performs similarly to the AQLR bootstrap test in
terms of power. Computation of the ELR/t-test/κauto bootstrap test using
10,000 bootstrap repetitions takes 3�1� 3�8� and 5�6 seconds when p = 2� 4�
and 10� respectively, and n = 250 using GAUSS on a PC with a 3.2-GHz pro-
cessor. This is slower than the AQLR/t-test/κauto bootstrap test (see the end
of Section 2) by factors of 9�1� 9�7� and 6�5�

Section S6.3.2 of the Supplemental Material reports additional finite-sample
results for the case of singular correlation matrices. The results for the
AQLR/t-test/κauto test show that the bootstrap version performs better than
the normal version in terms of MNRP’s, but similarly in terms of average
power. Both tests perform well in an absolute sense. The bootstrap version

26The binding constraint on the number of simulation repetitions is the ELR test; see below
for details.
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of the MP-QLR/t-test/κauto test also is found to have good MNRP’s. How-
ever, its finite-sample average power is much inferior to that of the AQLR/t-
test/κauto bootstrap test—quite similar to the asymptotic power differences.

For the ELR/t-test/κauto bootstrap test, results for singular correlation ma-
trices are reported in Section S6.3.3 of the Supplemental Material only for the
case of p = 2� The reason is that with a singular correlation matrix, the Hessian
of the empirical likelihood objective function is singular almost surely, which
causes difficulties for standard derivative-based optimization algorithms when
computing the ELR test statistic. With p = 4 and p = 10� the constrained op-
timization algorithm in GAUSS exhibits convergence problems and computa-
tion times are prohibitively large. For p = 2� the ELR bootstrap test’s perfor-
mance is essentially the same as that of the AQLR bootstrap test in terms of
MNRP’s and power.

In conclusion, we find that the AQLR/t-test/κauto bootstrap test, which is
the recommended test, performs well in an absolute sense with both nonsingu-
lar and singular variance matrices, and outperforms the other tests considered
in terms of asymptotic and finite-sample MNRP’s or power, computational
time, and/or computational stability.
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