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Abstract

We estimate an equilibrium sorting model of housing location and commuting mode choice with endoge-

nous traffic congestion to evaluate urban transportation policies. Leveraging fine-scale data from travel

diaries and housing transactions identifying residents’ home and work locations, we recover rich pref-

erence heterogeneity over both travel mode and residential location decisions. While different policies

produce the same congestion reduction, their impacts on social welfare differ drastically. In addition, sort-

ing undermines the congestion reduction under driving restrictions and subway expansion but strengthens

it under congestion pricing. The combination of congestion pricing and subway expansion delivers the

greatest congestion relief and efficiency gains.
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Chapter 1: Main Text1 Introduction

Transportation plays a crucial role in shaping the urban spatial structure and the organization of economic

activity. In many developing countries, rapid urbanization and motorization, together with poor infrastructure,

have created unprecedented traffic congestion with severe economic consequences (Li, 2018; Akbar et al.,

2023).1 To address these challenges, local governments around the world have implemented a suite of policies,

including driving restrictions, public transit investment, congestion pricing, and gasoline taxes. In the short

term, the effectiveness of these policies in alleviating congestion crucially hinges on the substitutability of

travel modes and the sensitivity of travel demand to changes in commuting costs. In the medium to long run,

these policies are likely to have broader impacts on the urban spatial structure through household adjustment of

residential locations. This sorting response, in turn, could mediate the effectiveness of transportation policies

on congestion reduction. In addition, many policies that address congestion have distributional consequences.

For example, collecting tolls could intensify equity considerations since low-income households spend a larger

share of income on transportation. This paper aims to understand the efficiency and equity impacts of urban

transportation policies while accounting for sorting responses and endogenous congestion.

Both the theoretical literature (LeRoy and Sonstelie, 1983; Brueckner, 2007) and empirical analyses

(Baum-Snow and Kahn, 2000; Jerch et al., 2021) have demonstrated a close connection between transporta-

tion policies and the housing market. Motivated by these studies, we develop and estimate an equilibrium

model of residential sorting that incorporates preference heterogeneity and allows general equilibrium feed-

back between housing locations and commuting decisions through endogenous congestion. A key aspect of

our model is that congestion, which varies spatially and spills over to other regions, is determined by the

commuting modes and residential locations of all households. At the same time, congestion directly affects

households’ location choices through its impact on the ease of commuting. Once estimated, our model allows

us to predict new equilibrium outcomes under different transportation policies in terms of travel mode choices,

household locations, congestion level, housing prices, and social welfare.

The empirical context of our study is Beijing, which has a population of 21.5 million and has routinely

ranked as one of the most congested and polluted cities in the world. Beijing’s municipal government has

implemented several policies to aggressively combat traffic congestion and air pollution. It has adopted a

driving restriction policy since 2008 that restricts vehicles from driving one weekday per week based on the

last digit of the license plate. It also invested a staggering $100 billion in transportation infrastructure between

2007 and 2018 by adding 16 new subway lines with a total length of 523 km. Beijing’s anti-congestion policies

(driving restrictions and subway expansion), together with a proposed congestion pricing scheme, represent

three broad approaches to regulating the unpriced congestion externality: the first a command-and-control

1The TomTom Traffic Index, based on real-time GPS traffic data from 403 cities in 56 countries, shows that the ten most congested
cities in 2018 were all from developing and emerging economies. Four cities in China (including Beijing) were among the top 30
list. Beijing’s drivers spend nearly 180 extra hours on the road (or 9% of working hours) per year relative to the travel time under the
free-flow speed. See https://www.tomtom.com/en_gb/traffic-index/ranking. Commuting is one of the most unpleasant
uses of time according to subjective well-being assessments (Kahneman et al., 2004).
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demand-side policy, the second a supply-side policy, and the third a market-based demand-side policy.

Our analysis leverages two unique data sources with fine spatial resolution (street addresses) that allow

us to jointly model residential locations and commuting choices. The first dataset is the Beijing Household

Travel Survey (BHTS) from 2010 and 2014, a large representative survey that records households’ home and

work addresses, trips made in a 24-hour window, and other demographic and transportation-related informa-

tion. We complement this dataset by constructing the historical commuting route, distance, travel time, and

pecuniary travel cost for all travel modes (walking, biking, bus, subway, car, or taxi) for each observed trip.

The second data source contains housing transactions from a major government-run mortgage program for

Beijing residents. Critically for our analysis, the housing data report not only the home addresses but also

the work addresses of both the primary and secondary borrowers. Using these home and work addresses, we

put together over 13 million hypothetical work-commute and travel-mode combinations for all primary and

secondary borrowers. To our knowledge, these datasets constitute the most comprehensive data that link work

commutes and housing transactions in the context of equilibrium sorting models.

We estimate the equilibrium sorting model in two steps. First, using household travel surveys, we estimate

heterogeneous preferences on travel times and monetary costs, allowing us to recover the distribution of the

value of time (VOT). We then utilize the estimated parameters and the work locations of both the primary and

secondary borrower to construct an “ease-of-commute” attribute for each commuter in the household and for

all properties in the household’s choice set. The ease-of-commute attribute reflects the attractiveness of a prop-

erty’s location to its household members’ work commutes. These household-property-specific attributes are

included in the second step, where we estimate households’ preferences for property attributes from observed

home purchases. In both steps, we account for a rich set of observed and unobserved household heterogeneity

and address potential endogeneity concerns.

The average and median VOT from our preferred specification is 95.6% and 84.6% of survey respon-

dents’ hourly wage, consistent with estimates in recent literature (Small et al., 2007; Buchholz et al., 2020;

Goldszmidt et al., 2020). Households are willing to pay 18% more for an equivalent reduction in the wife’s

commuting time than the husband’s commuting time. We report the income elasticity of housing demand and

the income elasticity of the marginal commuting cost, both of which are estimated within a unified framework.

They are key determinants of the urban spatial patterns of residential locations.

We next simulate equilibrium residential sorting and transportation outcomes based on three policies of

interest: driving restrictions, congestion pricing, and subway expansion, as well as combinations of the three.

We decompose the welfare effect along five margins of adjustment. The first margin measures change in

welfare when households adjust travel mode in response to increasing commuting costs, holding congestion

and residential locations fixed. The second margin considers partial speed adjustments, while the third margin

allows the transportation sector to clear; both are commonly studied in the transportation literature. The fourth

margin incorporates sorting and simulates general equilibrium outcomes when both the transportation sector

and housing market clear. Lastly, we model housing supply adjustments. We are unaware of any prior work in

the urban economics literature that combines a structurally estimated model with simulations to decompose
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all of these margins of adjustment. In addition to decomposing the welfare effect along different margins, we

also report welfare benefits from reduced air pollution as a result of less driving.

Our policy simulations yield several key findings. First, while all three policies are designed to reduce con-

gestion, they exhibit different and sometimes opposite impacts on the spatial patterns of residential locations

and equilibrium housing prices. The congestion alleviation under the driving restriction disproportionately

benefits long commutes and leads to minimal sorting. Conversely, distance-based congestion pricing pro-

vides strong incentives for commuters to move closer to their workplaces. In comparison, subway expansion

generates the most variable changes in commuting costs across households and triggers the strongest sorting

responses, though in the opposite direction of congestion pricing. It disperses households away from the city

center and workplaces into locations near new subway stations in the suburbs.

Second, residential sorting can either strengthen or undermine the congestion-reduction potential of trans-

portation policies. Sorting enhances the efficacy of congestion relief for congestion pricing because house-

holds, especially those with long commutes, are incentivized to live closer to their work locations and drive

less. This magnifies the welfare gain of congestion pricing by as much as 40% for high-income households

and 16% for low-income households. On the other hand, sorting in response to subway expansion leads to

further separation between residential and work locations, dampening the congestion reduction and welfare

gains from infrastructure investment.

Finally, transportation policies generate different welfare implications in the aggregate and across income

groups. Beijing’s rapid subway expansion increased consumer surplus and aggregate welfare despite achiev-

ing a modest reduction in congestion. In contrast, driving restrictions are welfare-reducing in spite of their

larger associated congestion reduction. Congestion pricing is welfare-improving but regressive, creating a sig-

nificant impediment to its adoption in practice. Nevertheless, such a distributional concern can be addressed

via appropriate revenue recycling. Congestion pricing and subway expansion in tandem deliver the largest im-

provement to traffic speed and net welfare gain—equivalent to 3% of the average household’s annual income.

In addition, the revenue from congestion pricing could fully finance the capital and operating costs of subway

expansion, eliminating the need to resort to distortionary taxes. These results showcase the capabilities of

our sorting model in capturing various adjustment margins and evaluating different policy scenarios under a

unified framework that accounts for general equilibrium effects and preference heterogeneity.

We conduct robustness checks to examine choices of housing demand IVs, measurement errors, and speed

endogeneity. In several extensions, we also consider housing supply responses (with a calibrated housing sup-

ply elasticity), more granular congestion measures, removing random coefficients, and incorporating migra-

tion and consumption access. Incorporating the housing responses allows more people to move to desirable

locations and magnifies the role of sorting. Results with more granular congestion measures are similar to the

baseline with city-wide congestion, as most of Beijing’s urban core is severely congested during rush hour.

Shutting down random coefficients overestimates the welfare losses from driving restrictions and congestion

pricing but underestimates the benefits of subway expansion. Incorporating migration and consumption access

does not change the qualitative results of our analysis.
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Our study makes three main contributions. First, it is the first study in the empirical sorting literature

(Epple and Sieg, 1999; Bayer et al., 2007) to jointly model residential locations and travel mode choices and

evaluate how these choices simultaneously determine both congestion and distance to work in equilibrium.

Most sorting papers (see Kuminoff et al. (2013) for a review) treat both the distance to work and the level

of congestion as exogenous attributes.2 In our study, the aggregate welfare implications differ qualitatively

whether we account for or abstract from endogenous changes in congestion.

Second, our study relates to the recent advances using quantitative spatial equilibrium (QSE) models to

explore the role of transportation in urban systems (see Redding and Rossi-Hansberg (2017) for a review).

QSE models offer two major improvements over sorting-based approaches such as ours: they can directly

incorporate the labor market and model agglomeration forces (Ahlfeldt et al., 2015; Tsivanidis, 2023). On

the other hand, QSE models have a couple of limitations. Commuting costs are often characterized as iceberg

costs and estimated from observed worker flows and wages via gravity equations. In addition, these models

rely on tractable distributional assumptions (i.e., Fréchet) with homothetic preferences to ensure analytic

tractability. In contrast, we microfound commuting costs by estimating preferences over commuting time (that

depends on endogenous congestion) and monetary costs directly from observed mode choices. This allows us

to recover the distribution of the value of time (VOT), the single most important object for the welfare effects

of transportation policies. In addition, we incorporate nonhomothetic, heterogenous preferences, which matter

for equilibrium responses and lead to meaningful changes in welfare evaluations.

A third and final contribution of our paper is that by characterizing the underlying travel and housing

choices, our equilibrium sorting framework provides a micro-foundation that bridges the short-run and long-

run policy impacts in transportation studies. Studies with a focus on short-run effects often find results that

are different or with opposite signs (e.g., Duranton and Turner 2011) from those that examine longer-run

implications in terms of travel choices, traffic congestion, and air pollution. As pointed out by Gallego et

al. (2013), little has been done to understand the transition from the short- to the medium- or long-run.3 We

illustrate that the equilibrium adjustments in the transportation sector and housing market offset more than half

of the initial congestion relief of Beijing’s subway expansion. Our framework provides a common yardstick

to compare actual and counterfactual policies over the medium- to long-run.

The paper proceeds as follows. Section 2 describes the data and policy background. Section 3 lays out

the equilibrium sorting model and the estimation strategy. The estimation results are presented in Section

4. Section 5 explains the counterfactual simulation algorithm. Section 6 examines different transportation

policies and compares their welfare consequences. Section 7 concludes.

2An exception is Kuminoff (2012), which models household decisions in both the work and housing markets and endogenizes
the commuting distance but keeps congestion exogenous. In contrast, we treat both congestion and distance to work as endogenous
objects that are determined simultaneously in equilibrium.

3Our work complements but differs from calibrated computable general equilibrium studies (Yinger, 1993; Anas and Kim, 1996;
Basso and Silva, 2014). In our analysis, the estimation of the preference parameters and simulation of policy counterfactuals are
internally consistent and based on the same model.
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2 Policy Background, and Data Description

2.1 Policy Background

The central and municipal governments in China have pursued a series of policies to address growing ur-

ban traffic congestion over the past decades. In Beijing, these policies include driving restrictions, vehicle

purchase restrictions, and an investment boom in subway and rail transportation infrastructure. The driving

restrictions were implemented as part of Beijing’s effort to prepare for the 2008 Summer Olympics.4 Initially,

half of all vehicles were restricted from driving on a given weekday based on their license plate number. After

the Olympics concluded, the restrictions were relaxed to one weekday per week for each vehicle, depending

on the last digit of the license plate. Acquiring a second vehicle to avoid the restriction is difficult due to

Beijing’s quota system that caps the number of new vehicle sales to curb the growth in car ownership. These

quotas are allocated via lotteries. The winning odds decreased drastically from 1:10 in early 2012 to nearly

1:2,000 in 2018 as a result of the increasing number of lottery participants and decreasing quota sizes over

time (Xiao et al., 2017; Li, 2018; Liu et al., 2020).5 These time-series changes in the winning odds provide

useful exogenous variation for the housing demand analysis, as we discuss below.

Beyond implementing demand-side policies, the Beijing municipal government also invested heavily in

public transportation infrastructure. From 2007 to 2018, 16 new subway lines were built with a combined

length of over 500 km (See Appendix Figure A1 for subway maps over time). By the end of 2019, Beijing

had the world’s longest and busiest subway system, with a total length of nearly 700 km and daily ridership of

over 10 million. This expansion echoed the boom in infrastructure investment across many regions in China.

The number of cities with a subway system in mainland China increased from four to over 40 from 2000 to

2019, and the total urban rail network reached over 6,700 km by the end of 2019. These expansions were

designed, in part, to slow the growth of personal vehicle use by making public transportation more accessible.

Despite these policy efforts, traffic congestion continues to be a pressing issue. The average traffic speed

in 2019 was 24.6 km/h during peak hours (7-9 am and 5-7 pm), according to the 2020 Beijing Transportation

Report. From a neoclassical perspective, the aforementioned policies fail to address the root cause of traffic

congestion: the mispricing of road capacity.6 The Beijing municipal government recently announced a plan to

introduce road pricing in the future while soliciting feedback from experts and the public (Yang et al., 2020).

4Athens, Greece, implemented the first driving restrictions in 1982. Since then, a dozen other large cities in the world, including
Bogotá, Mexico City, and New Delhi, have adopted similar policies. The impacts of these policies on congestion and air pollution
have been mixed (Davis, 2008; Viard and Fu, 2015; Zhang et al., 2017).

5About 20,000 new licenses were distributed each month through nontransferable lotteries from 2011 to 2013. The monthly quota
was reduced to 12,000 after 2013. These quotas were considerably lower than the historical vehicle sales in Beijing.

6Despite being advocated by economists since Vickrey (1963), congestion pricing is limited in practice due to technical feasibility
and especially political acceptability. Several European cities (London, Milan, Stockholm, and Gothenburg) implemented various
congestion pricing schemes over the past few decades. The New York state legislature recently approved a congestion pricing plan
for New York City, which is set to become the first US city to enact congestion pricing.
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2.2 Data Description

We rely on two main datasets for our analysis: a) the Beijing Household Travel Surveys (BHTS) from 2010

and 2014 and b) housing mortgage data from 2006-2014 with detailed information on household demograph-

ics and the work addresses of home buyers. The combined commuter- and household-level data provide one

of the most comprehensive descriptions of commuting patterns and residential locations in any city to date.

Appendix Section A provides more details on data construction and how our data compare to other data sets

used in recent empirical studies of transportation and urban issues.

Beijing Household Travel Survey The two rounds of BHTS were collected by the Beijing Transportation

Research Center to inform transportation policies and urban planning. It includes data on individual and

household demographics and a travel diary on all trips taken during the preceding 24 hours. The survey

reports detailed information for each trip by each commuting member of a household, including the origin

and destination, departure and arrival time, trip purpose, and travel mode used.

We focus on six travel modes: walk, bike, bus, subway, car, and taxi, as other modes (e.g., motorcycles,

company shuttles, carpooling, multi-modal) collectively account for less than 4% of all trips. For each trip,

we construct attributes including the travel time, travel distance, and monetary cost for all travel modes in

commuters’ choice set. The size of the choice set varies across trips depending on vehicle ownership, the

driving restriction policy, and bus/subway routes. Appendix Section A.3 provides a detailed discussion on the

procedures used to calculate the mode-specific travel time and monetary cost for each trip.

Table 1 provides summary statistics of the data. Figure 1 plots for each travel mode the observed share of

commuting trips and the constructed travel time, cost, and distance. Panel (a) presents travel patterns in 2010

and 2014. Walking accounts for a significant share of all commuting trips: 15.0% in 2010 and 13.5% in 2014,

respectively. These trips take 51 and 40 minutes on average, with a distance of 4.9 and 3.7 km. From 2010

to 2014, the shares of walk, bike, and especially bus trips decreased while the shares of car (i.e., driving) and

subway trips increased, reflecting rising vehicle ownership and expansion of the subway network. Walking

and subway trips are the longest in duration, while subway and car trips are the longest in distance. Car trips

have a slightly longer duration and distance than taxi trips but are cheaper. Overall, the trade-off between time

and cost is clear: walking trips are the slowest but also the cheapest. Car and taxi trips are faster but more

expensive than other trip types. Panel (b) of Figure 1 contrasts travel patterns between high- and low- (above-

and below-median) income households. High-income households are more likely to drive, use the subway,

and take taxis and are less likely to use other modes. Car and taxi trips are much more expensive for low-

income than for high-income households as a percentage of the hourly wage. There are limited differences in

travel distance across the two income groups except for the distance of car trips.

Housing Transactions The data on housing transactions come from a major government-sponsored mort-

gage program in Beijing and covers July 2006 to July 2014. Virtually all eligible home buyers apply for

mortgages through this program before obtaining commercial loans, as it offers a subsidized interest rate
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that is more than 30% lower than commercial mortgage rates. Each transaction in our data corresponds to a

mortgage application, and there are no refinancing loans in the sample.

The final dataset includes 77,696 mortgage transactions, with detailed information on housing attributes

such as the property size, age, street address, transaction price, and date when the mortgage was signed.7

As is reflective of the housing supply in urban China, most housing units are within housing complexes,

equivalent to condominiums in the US. Table 2 provides summary statistics of the data. We observe household

demographics including income, age, gender, marital status, residency status (hukou), and—critically for our

analysis—the work addresses of the primary borrower and the co-borrower if one is present. In our housing

demand analysis, we distinguish the borrowers by gender. We geocode the home and work addresses and

construct measures of proximate amenities (e.g., schools and parks). The mortgage data represent a subset of

housing transactions (not all buyers apply for mortgages) and may be subject to selection issues. To address

this concern, we re-weight the mortgage data to match the distribution of housing price, size, age, and distance

to the city center among more representative housing transactions (obtained from separate datasets) by using

entropy balancing (Hainmueller, 2012). All of the empirical analyses, as well as the counterfactual analyses,

use the weighted sample. Results using the unweighted sample are similar. Appendix Section A.4 discusses

the re-weighting procedure in more detail and describes additional data patterns.

Figure 2 shows the spatial pattern of housing and household attributes based on mortgage transactions

from 2006 to 2014, with a warmer color representing a higher value. Housing prices tend to be higher, and

the distance to work is shorter near the city center. The outskirts of Beijing have larger homes with a lower

unit price, reflecting the classic distance-housing size trade-off. There are some exceptions: the high-tech

center in northwestern Beijing outside the fifth ring road has high housing prices and short commutes that

are comparable to places in the city center. The northern parts of the city have better amenities (schools and

parks) and more work opportunities and attract high-income households.

Our equilibrium sorting model requires us to construct home buyers’ choice sets. In theory, these choice

sets could consist of all properties listed on the market. Researchers need to construct hypothetical commuting

attributes of different travel modes for all properties in these choice sets. This is technically infeasible because

the number of potential home–work–mode combinations exceeds hundreds of billions. Large choice sets are

a common empirical challenge in the housing demand literature. To reduce the computational burden, we

follow a choice-based sampling strategy as in Bayer et al. (2009). The choice set for a household is assumed

to include the purchased home and a 1% sample of houses randomly chosen from those sold during a two-

month window around the purchase date.8 Section 4.2 conducts robustness analyses using different choice

sets and finds little impact on our estimates. For each property in a household’s choice set, we construct the

travel mode attributes for both the primary borrower’s and co-borrower’s work commute. The construction of

7We remove transactions with a missing or zero reported price, a price lower than Y5,000/m2 (the average price is Y19,800/m2),
buyers with no reported income, and addresses outside the sixth ring road.

8Choice-based sampling has been shown to yield consistent results in Wasi and Keane (2012) and Guevara and Ben-Akiva (2013).
We choose a two-month window because Beijing’s real estate market was fluid during our sample period. The median (average)
number of days on the market was only 8 (22) and 13 (38) in 2013 and 2014, respectively.
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travel mode attributes involves over 13 million route–mode combinations.

2.3 Commuting Route, Speed, and Congestion

The travel survey does not report the actual commuting routes chosen by individuals. We assume households

follow the routes recommended by the Baidu and Gaode APIs, which may differ between years (e.g., 2010 and

2014). In counterfactual analyses, commuting routes are held fixed under driving restrictions and congestion

pricing and only re-optimized for subway trips with subway expansions. In other words, we do not endogenize

commuting routes in the model, which is computationally infeasible with a complex road network.

Driving speeds constructed using Baidu APIs vary by commuting routes and exhibit significant varia-

tion among households living in the same neighborhood but traveling to different workplaces, reflecting the

varying degrees of congestion in parts of the city.

Congestion is measured by traffic density, constructed as the mileage-weighted number of vehicles on

the road. Due to the fluid nature of congestion (which spreads across areas), determining the appropriate

level of spatial granularity for measuring congestion is a complex empirical matter. We adopt three measures:

city-wide congestion, congestion within each ring-road band, and congestion within each ring-road quadrant

in our policy simulations. City-wide congestion allows for the maximum spillover but may be too coarse.

The ring-road-quadrant measure strikes a reasonable balance between the need for localized measures and

the complexities associated with the network effects of congestion.9 To construct region-level congestion,

commuting routes are divided into the corresponding segments by region. Congestion within a region equals

the sum of mileage-weighted driving demands of individuals from different neighborhoods whose commuting

paths cross the focal area. Correspondingly, a driver’s commuting time is the sum of driving time for each

trip segment within the relevant area. This approach provides a good representation of how congestion affects

commuting time and allows congestion in one area to spill over to other areas with a complex road network.

The effect of congestion on speed is governed by the speed-density elasticity, which states the percentage

improvement in speed when congestion decreases by one percent. The speed-density relationship embodies

Beijing’s existing transportation technology. We use the same traffic data as Yang et al. (2020) to estimate this

relationship, which contain real-time traffic volume and speed at two-minute intervals (aggregated to hourly

intervals) from over 1,500 remote traffic sensors covering all major roads throughout Beijing in 2014. Results

in Section 4.3 indicate limited heterogeneity in speed-density elasticity across regions during rush hour.

2.4 Reduced-form Evidence

Due to space constraints, we refer readers to the event studies in a concurrent study Jerch et al. (2021) that

demonstrate the impact of Beijing’s driving restriction policy on the housing market. Appendix Section B.1

presents additional evidence on sorting where neighborhoods that gain access to new subway lines account for

a greater fraction of aggregate property transactions, suggesting that Beijing households actively sort across

9There are 15 ring-road-quadrant areas based on the intersection of ring roads and quadrants (NW, SW, NE, SE, see Figure A2).
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residential areas in response to transportation policies. We now turn to a structural model integrating the

transportation sector with the housing market.

3 Empirical Equilibrium Sorting Model

The sorting model characterizes how household members choose commuting modes and residential loca-

tions.10 It also specifies the joint equilibrium conditions for the transportation sector and the housing market.

On the one hand, residential locations determine households’ commute distances, which affect driving demand

and contribute to traffic congestion. On the other hand, traffic congestion impacts the desirability of different

residential locations and directly influences housing demand. Once estimated, the model allows counterfac-

tual simulations and provides a direct comparison of congestion levels, residential locations, housing prices,

and social welfare across different policies.

Work locations are fixed ex-ante and do not change. This assumption is motivated by several observations.

First, event studies in Appendix Section B.2 suggest that job changes tend to predate home purchases, not

the other way around.11 Second, employment opportunities in the same industry tend to be clustered in

Beijing. Hence, switching jobs may not entail meaningful changes in work locations. Third, the mortgage

data only report current employment but contain no information on alternative job opportunities available to

each household. Finally, adding the labor market component would significantly complicate our empirical

analysis with rich individual-level observed and unobserved preference heterogeneity.

3.1 Housing Demand

We specify a characteristic-based housing demand model, where preferences over housing units are parame-

terized as a function of both observed and unobserved property attributes and household characteristics (Berry

et al., 1995). Households are denoted by i and a housing unit/property is indexed by j. A home or work loca-

tion refers to a specific address. Our data are longitudinal, but we suppress time t to ease exposition. Appendix

Table A1 tabulates all mathematical notations used in the order of appearance.

Conditioning on work locations, the utility for household i choosing housing unit j is specified as:

max
{ j∈Ji}

Ui j = αi p j +x jβi +∑
k

φikEVi jk(vi jk)+ξ j + εi j, (1)

where Ji is the choice set for household i, p j denotes home price, and x j denotes a vector of observed hous-

ing attributes such as property size and age.12 Commuting members within household i are denoted by

k ∈ {male borrower, female borrower}.13 EVi jk(vi jk) is the expected commuting utility that member k in

10A more detailed version of the model can be found in Barwick et al. (2021).
11About 60% of home buyers in our data changed jobs within three years prior to purchasing the home.
12As is standard in the sorting literature, we do not consider an outside option and assume all households live in a property.
13The fraction of male and female borrowers in our sample is 60% and 40%, respectively.
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household i derives from the optimal commuting mode. It characterizes home j’s attractiveness in terms of

member k’s work commute. Our notation makes it explicit that the commuting utility depends on the driving

speed vi jk of member k’s work commute (which is affected by congestion) in addition to the travel cost. As

shown in Section 3.2 below, this commuting utility is our key innovation relative to traditional residential

sorting models. Transportation policies generate different impacts on the commuting utility. They can affect

either commuting time (such as driving restrictions and subway expansion) or costs (such as congestion pric-

ing), which interact with households’ heterogeneous commuting preferences. These changes then influence

individuals’ travel modes, which collectively determine congestion and further affect their commuting utility.

The variable ξ j represents unobserved housing attributes, and εi j is an i.i.d. error term with the type I extreme

value distribution that reflects unobserved preferences over each housing choice.

The household-specific price coefficient αi is related to the logarithm of household income yi:

αi = α1 +α2 ∗ ln(yi).

Household preferences over housing attributes are denoted as βi, which consists of a household-specific com-

ponent and a population average. For each element ` in βi:

βi` = β̄`+ ziβ`,

where zi is household demographics such as age and income. The ease-of-commute preference φik differs

across household members and is characterized by random coefficients:

φik = φ̄k +φkζik, k ∈ {Male borrower,Femaleborrower},

where ζik is i.i.d. normal. The probability that household i chooses home j is denoted by:

Pi j(p,v) = h(EV(v),p,x,ξξξ ,zi), (2)

where p and v denote the vector of prices for all properties and driving speeds for all individuals’ commut-

ing trips, and EV(v) is a vector of the ease-of-commute utility for different properties given household i’s

work location. The triplet x, ξξξ , and zi denote observed housing attributes, unobserved housing quality, and

household i’s demographics, respectively.14

14Equation (1) does not control for neighborhood composition, such as race and ethnicity (Bayer et al., 2007), as 96% of Bei-
jing’s population is Han Chinese (2010 Census). In addition, as Figure 2 illustrates, Beijing is characterized by co-mingling among
households with different socioeconomic statuses and exhibits high income heterogeneity within small neighborhoods.
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3.2 Choice of Travel Mode

Utility-maximizing individuals in a household choose from six commuting modes (walk, bike, bus, subway,

car, and taxi) based on the trip time and financial costs. With slight abuse of notation, we use i to denote

an individual in a household rather than the whole household in this subsection. Individual i’s utility of

commuting from home j to work using mode choice m is specified as:

max
m∈Mi j

ui jm = θim + γ1i · timei jm(vi j)+ γ2 · costi jm/yi +wi jmη + εi jm, (3)

where Mi j is the set of transportation modes available to individual i’s work commute.15 The mode-specific

random coefficients, θim, have a normal distribution with mean µm and variance σm. Without loss of generality,

the random coefficient for walking is normalized to zero. These random coefficients capture unobserved

heterogeneous preferences that vary across individuals, such as the enjoyment of driving a car, the perceived

environmental friendliness of using public transportation, scheduling or inconvenience costs that vary across

individuals but do not scale with the time or distance traveled, and the health benefits of biking and walking.

Variable timei jm denotes the commute duration between i’s work location and home j via mode m. The

driving time (timei j,car and timei j,taxi) depends on the driving speed vi j, which is ultimately determined by

the congestion level.16 The monetary cost of the trip is denoted as costi jm and household income as yi. The

variable wi jm includes a rich set of interactions between mode dummies and year-fixed effects, trip attributes,

and commuter demographics to control for time-varying and location-specific factors by travel mode (such as

changes in public transportation) as well as preference heterogeneity. Finally, εi jm is an i.i.d. error term with

a type I extreme value distribution.

The key parameters in the travel demand analysis are γ1i and γ2. The time preference γ1i follows a chi-

squared distribution with mean µγ as in Petrin (2002).17 An individual’s sensitivity to the monetary costs

of commuting is assumed to decrease in income: γ2/yi. VOT, the most important preference parameter for

transportation decisions (Small, 2012), is measured by γ1i
γ2
· yi and directly linked with the hourly wage. Our

specification of VOT follows the transportation literature. Its theoretical foundation is the time allocation

models of Becker (1965) and Small (1982), where the value of time spent on commuting is a function of the

lost wage income and scheduling preferences.

Conditional on home location j, the probability that individual i chooses mode m to commute to work is:

Ri jm(vi j) = r(timei j(vi j),costi j/yi,wi jm) (4)

15The size of the choice set varies across commuters and trips. Walk, bike, taxi, and subway are available for all trips. Driving is
only available for car owners on non-restricted days. Bus availability is determined by home and work locations.

16Road congestion affects the travel time for bus trips in addition to car and taxi trips. We treat buses as if they run in dedicated
lanes unaffected by congestion. We also abstract away from capacity constraints for buses and subways. Hence, we may overpredict
bus and subway mode shares in simulations with high congestion levels.

17A chi-squared distribution ensures all individuals have a positive value of time and is computationally tractable.
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where timei j(vi j) and costi j/yi denote the vector of travel time and cost (as a share of individual i’s hourly

wage) for all travel modes. Vector wi jm captures all other individual- and trip-mode-specific characteristics.

The ex-ante expected commuting utility (before the realization of travel shocks) is defined as:

EVi j(vi j) = Eεi jm

(
max

m∈Mi j
ui jm(vi j)

)
= log

(
∑

m∈Mi j

exp
[
θim + γ1itimei jm(vi j)+ γ2costi jm/yi +wi jmη

])
, (5)

which is the ease-of-commute variable discussed in Equation (1).

3.3 Market-Clearing Conditions and the Sorting Equilibrium

In the housing market, choices of individual households aggregate to total housing demand, and housing prices

adjust to equate demand and supply. In the transportation sector, the equilibrium congestion level and, hence,

driving speed is jointly determined by driving demand through all individuals’ travel mode choices and road

capacity. The housing market and the transportation sector interact in two dimensions: the spatial locations

of households affect the distance of work commutes and the choice of travel mode and hence congestion and

driving speeds in the transportation sector. At the same time, the level of traffic congestion that is determined

in the transportation sector affects the attractiveness of residential locations through the commuting utility as

discussed above, which, in turn, determines households’ sorting decisions and shapes their spatial distribution.

Housing Market Households’ choice probabilities Pi j give rise to the aggregate housing demand:

D j(p,v) = ∑
i

Pi j(p,v), ∀ j,

which depends on the vector of housing prices p as well as the vector of the driving speeds v (through the

ease-of-commute utility). We consider two scenarios for housing supply. In the first case, the housing supply

is fixed: S j(p) = 1 (the supply of each property is one). In the second case, housing supply has a constant

elasticity and adjusts at the neighborhood level in response to the average price within the neighborhood. This

assumption mimics developers’ considerations to build more properties in desirable neighborhoods.

Transportation Sector Demand for driving is determined by both housing locations and travel mode choices.

Intuitively, mode choices determine the extensive margin (whether to drive), while housing locations deter-

mine the intensive margin (the commuting distance). Traffic density, or congestion, is the aggregation over

all households’ driving demand (the notation makes it explicit that traffic density depends on the vector of

housing prices p and driving speeds v):

DT,r(p,v)≡∑
i

∑
j
1({i→ j}∩ r) ·Pi j[(p,v)] ·

{
[Ri j,car(v) ·disti jr,car]+ [Ri j,taxi(v) ·disti jr,taxi]

}
. (6)
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The subscript T denotes the transportation sector, and r defines the spatial granularity of the traffic density

measure. The indicator function 1({i→ j}∩ r) takes value 1 when the route from i to j intersects region

r. Pi j is the probability that household i chooses property j. Ri j,car and Ri j,taxi are the probabilities that

household i living in property j drives and takes taxi, and disti jr,car and disti jr,taxi are the distance travelled

by car and taxi within region r. Given the empirical nature of the appropriate level of spatial granularity for

traffic density/congestion r, we consider three levels: city-wide congestion, congestion at the ring-road-band

level, and congestion at the ring-road-quadrant level as discussed in Section 2.3.

The supply side of the transportation sector describes the relationship between the traffic density ST,r, the

number of vehicles on the road in region r, and the travel speed v that can be sustained given Beijing’s trans-

portation technology and road capacity. We assume the speed and density relationship has a constant elasticity

that differs across regions. This supply relationship characterizes the nature of congestion externality: drivers

on the road reduce other drivers’ speed.

Sorting Equilibrium A sorting equilibrium is defined as a vector of housing prices, p∗, and a vector of

driving speeds, v∗, such that:

1. The housing market clears for all properties:

D j = ∑
i

Pi j(p∗,v∗) = S j(p∗),∀ j. (7)

When housing supply adjusts at the neighborhood level, demand and supply are equal for each neigh-

borhood n: ∑ j∈n D j(p∗,v∗) = Sn(p∗),∀n.

2. The transportation sector clears for every region r, where aggregate driving demand at speeds v∗ is

equal to the traffic density that can be sustained under the existing road capacity at speed v∗:

DT,r (p∗,v∗) = ST,r(v∗),∀r. (8)

Our model follows the class of equilibrium sorting models with local spillovers studied in Bayer and

Timmins (2005) and more closely in Bayer et al. (2007), where the local spillover in our context is traffic

congestion from personal vehicles. If the error terms in both the housing demand Equation (1) and commuting

mode choice Equation (3) are from continuous distributions, then the system of Equations (2), (4), (7), and

(8) is continuous. The existence of a sorting equilibrium follows Brouwer’s fixed point theorem. Intuitively,

a unique vector of housing prices (up to a constant) p solves the system of equations defined by Equations (2)

and (7), conditional on traffic speed v. At the same time, Equations (4) and (8) define a continuous mapping

of traffic speed v on a compact and convex set given p. The fixed point of the system of Equations (2), (4),

(7), and (8) defines the equilibrium housing prices and traffic speeds {p∗,v∗}.18

18The proof of equilibrium existence closely follows Bayer and Timmins (2005) and is available upon request. In our model with
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4 Estimation Results

This section discusses how we estimate the parameters in the travel mode choice, housing demand, and the

speed–traffic density relationship. Appendix Section C includes further details.

4.1 Commuting Mode Choice

The parameters of the travel mode choices are estimated via simulated maximum likelihood estimation (MLE)

using household travel surveys. The key parameters of interest are time and monetary cost preferences. We

assume that the error term εi jm in Equation (3) is uncorrelated with commuting trips’ monetary costs and

travel time. Monetary costs are likely to be exogenous because Beijing’s transportation bureau sets bus and

subway fares uniformly across all routes. Gas prices are determined by the National Development and Reform

Council and adjusted periodically, and taxi fares are regulated by the Beijing government.19 Hence, monetary

costs do not vary by the congestion level or service quality. Travel time is determined by congestion. We

include a rich set of interactions of travel mode with demographics, time, and spatial fixed effects to absorb

shocks that are common across households. Given these controls, εi jm reflects idiosyncratic considerations at

the individual home-workplace-mode level that are unlikely to be correlated with travel time.

Table 3 presents parameter estimates for six specifications. The first three specifications control for de-

mographics but do not have random coefficients. The last three specifications include random coefficients

on travel time and travel mode dummies. Column (1) controls for interactions between the year dummies

(2010 or 2014) and mode fixed effects to capture changes in public transportation service over time. The

implied VOT is 75.7% of the hourly wage. Column (2) adds the interactions between mode fixed effects and

trip characteristics, which include trip distance bins ( ≤2km, 2-5 km, ≥ 5km), origin ring road fixed effects

(e.g., whether the origin is within the 4th ring road), and destination ring road fixed effects. These controls

account for local shocks to travel demand and significantly improve the model fit. For example, the literature

has documented that drivers value the reliability of travel time (Small et al., 2005). Uncertainty in travel time

likely scales with the trip distance and is partially absorbed by the mode and trip-distance bin fixed effects.

Ring road dummies for trip origins and destinations capture differences in the frequency and quality of public

transit services as well as congestion. Column (3) further includes interactions of mode fixed effects with

household demographics (age, age squared, gender, education, vehicle ownership, and number of workers).

These variables help explain different mode choices across demographic groups (e.g., wealthier households’

greater propensity of driving and using taxis) and improve the model fit.

spatially varying congestion responses and preference heterogeneity for endogenous attributes, uniqueness is not guaranteed. One
sufficient condition for a unique equilibrium requires exogenous attributes of housing and commuting to be “sufficiently explanatory”
of demand relative to endogenous ones, as pointed out by Bayer et al. (2007). To address the possibility of multiple equilibria, we
simulate our model with 100 different starting values. The simulation analyses always converge to the same equilibrium outcomes,
providing empirical evidence for uniqueness in our setting.

19For gas price regulations, see page 8 of https://www.globalpetrolprices.com/articles/43/. For taxi fare regulations,
see http://fgw.beijing.gov.cn/bmcx/djcx/cxldj/202003/t20200331_1752789.htm.
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Columns (4) to (6) use a chi-squared distribution with three degrees of freedom to approximate heteroge-

neous travel time preferences following Petrin (2002).20 In addition to the random coefficient on travel time,

Column (5) incorporates a random coefficient on the mode of driving. Column (6) further includes random

coefficients for all travel modes (with walking as the reference group), capturing the impact of unobserved

preferences on mode choices. For example, some commuters choose driving or taxi not because of a high

VOT but because of scheduling constraints. The dispersion of these preference parameters is economically

large and statistically significant, suggesting significant preference heterogeneity.

Column (6) is our preferred specification. Adding travel time and mode-specific random coefficients

leads to a stronger sensitivity to travel costs and delivers a much more reasonable estimate of VOT. Appendix

Figure A3 depicts the VOT estimate histogram. The average and median VOT is 95.6% and 84.6% of the

hourly wage, respectively, which is within the range typically found in the recent literature.21

Once we have estimated parameters from travel mode choices, we construct the commuting utility EVi j

as defined in Equation (5) for both the male borrowers and female borrowers based on their work locations.22

These variables are included as part of the (buyer-specific) housing attributes.

Identification and Robustness The identification of the preference parameters follows the standard identi-

fication arguments of random coefficient models. The parameters are identified by the variation in commuters’

characteristics and route attributes, as well as the correlation between these attributes and the chosen travel

mode. Mode-specific random coefficients are identified from differences in choice sets across individuals

(e.g., some do not have easy access to public transportation). Additionally, the parametric assumptions on the

functional form and distributions also contribute to the identification.

One common issue encountered in the estimation of travel mode choices pertains to the simultaneous

relationship between equilibrium mode choices and travel times. If households in a neighborhood share

similar preferences for driving, it would result in a high driving share and at the same time low driving speed

due to congestion. Table 3 incorporates a rich set of interaction terms between modes, trip attributes, and

household characteristics to address this. To further investigate the issue of simultaneity, we include the

interaction of driving with fine spatial controls in Appendix Table A2. These regressors absorb correlated

preferences in local areas and alleviate endogeneity concerns. Reassuringly, the resulting estimates closely

resemble those of the baseline. The parameters for travel time, costs, and VOT remain unchanged even with

these fine spatial controls. The model’s overall fit only improves marginally. These results suggest that the

extensive set of controls included in our baseline model adequately addresses potential endogeneity concerns.

20As in Petrin (2002), we winsorize the top and bottom 5% of the draws to minimize the impact of extreme draws, as VOT should
be finite. The distribution with three degrees of freedom (DF) provides the best fit, though results are similar with two or four DF.

21The VOT estimates typically range between 30% and 100% of hourly income (Small et al., 2007). Using a discrete choice
framework similar to ours, Small et al. (2005) estimate the median VOT at 93% of the hourly wage for commuters in Los Angeles.
The US Department of Transportation recommends using 50% of the hourly income as the VOT for local personal trips (e.g., work
commute and leisure but not business trips) to estimate the value of time savings for transportation projects (USDOT, 2015).

22We set EVi jk = 0 for unemployed family members. Note that the calculation of EVi j requires us to construct the travel time and
cost for all available travel modes for every property in households’ choice sets, as described in Section 2.2.
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Apart from the conventional concern of endogeneity, an additional, more nuanced issue arises regarding

measurement. During the survey years (2010 and 2014), real-time GPS applications were not widely accessi-

ble and individuals were generally unaware of idiosyncratic factors that impacted travel time when selecting

commuting mode. This mitigates the simultaneity concern, consistent with the findings in Appendix Table

A2. On the other hand, households were likely making decisions based on anticipated travel times rather than

the actual travel times or the travel times we constructed using Baidu/Gaode.

To address measurement errors in travel times, we conducted several robustness checks beyond controlling

for a rich set of trip-related fixed effects. First, we construct alternative travel time variables based on the

average speed either at the ring-road-band level or at the ring-road-quadrant level. The average local speed

might better reflect households’ expectations. Both parameter estimates and VOT are comparable to the

baseline (Appendix Table A3). Second, we repeat the exercise using self-reported travel times for the chosen

mode in Appendix Table A4. The VOT estimate (at 124% of the hourly wage) is higher than the baseline (at

96%). This is driven by the fact that self-reported values tend to underestimate the actual travel times, the

so-called recall biases as shown in Appendix Section A.3, and therefore inflate the implied VOT. Overall, our

findings remain robust to measurement errors.

4.2 Housing Location Choice

We now turn to the estimation of housing demand using the mortgage data. The ease-of-commute variable

EV i j that is derived from travel mode choices enters the housing demand Equation (1) as an observed housing

attribute. Similar approaches that nest the expected utility as a choice attribute have been used by Capps et

al. (2003) and Phaneuf et al. (2008) to estimate healthcare and recreational demand, respectively, though the

application to residential sorting is new to the best of our knowledge. Because ÊV i j is estimated separately,

we bootstrap the standard errors for housing demand parameters.

Nonlinear Parameters Housing demand is estimated using a two-step procedure: the first step uses simu-

lated MLE with a nested contraction mapping to estimate household-specific preference parameters (nonlinear

parameters), and the second step uses linear IV for coefficients in the mean utility (linear parameters). Specif-

ically, we reorganize household i’s utility of purchasing property j into a sum of household-specific utility

µi j and population-average utility δ j, which absorbs the unobserved housing attribute ξ j (we suppress time

subscript t to ease exposition):

Ui j = µi j +δ j + εi j (9)

µi j = α2ln(yi)p j +x jziβ +∑
k

φikEVi jk (10)

δ j = α1 p j +x jβ̄ +ξ j. (11)
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In the first step, we search for nonlinear parameters in Equation (10) to maximize simulated MLE while

inverting the population-average utilities δ j. In the second step, we regress the population-average utilities δ j

on prices instrumented by IVs to recover linear parameters.

Table 4 reports three specifications: without the EV terms (the ease-of-commute utility), with the EV

terms, and with random coefficients on the EV terms. The coefficient estimates are similar across specifica-

tions. As expected, high-income households tend to be less price-sensitive.23 We interact the age group dum-

mies with the distance to the nearest signature elementary school. Enrollment in these top schools is restricted

to residents in the corresponding school district, and houses in these districts command a high premium. The

baseline group is primary borrowers younger than age 30. The interaction coefficients in all specifications are

negative and highly significant, though borrowers between ages 30 and 45 exhibit the strongest preference

for proximity to key schools, as they are most likely to have school-aged children. Household size is not

reported in the mortgage data. Instead, we use the age of the primary borrower as a proxy for household size

and interact age group dummies with the property size. Older households have a stronger preference for large

houses. The group over 45 has the strongest large-house preference, likely due to the presence of children and

grandparents in the same household, a common household structure in China.

The EV terms for both household members have significant explanatory power and are associated with a

sizeable increase in the log-likelihood. Both working family members prefer homes with easier commutes.

To evaluate households’ willingness to pay (WTP) for a one-minute shorter commute, we search for changes

in housing prices that would keep households’ utility constant. According to our preferred specification in

Column (3), an average household is willing to pay an additional Y18,525 for a home that shortens the male

member’s daily work commute by one minute and Y21,885 for a similar reduction in the female member’s

commute time.24,25 The gap suggests that households prioritize the convenience of female members’ commute

in housing choices, consistent with descriptive evidence that women live closer to work locations (Appendix

Figure A4) and the existing literature (Le Barbanchon et al., 2020).

Household preferences for shorter commutes vary significantly. The interquartile range of WTP for a one-

minute reduction in the male member’s commute is Y11,000 and Y24,400, and for the female member, it is

Y15,000 and Y34,500. Both demographic factors and random coefficients reflecting unobserved preferences

contribute to this preference heterogeneity. Utilizing estimates from Column (3) of Table 4 but fixing the

random coefficients for EV terms at the mean, the interquartile range narrows to [Y14,800, Y21,000] for

males and [Y17,400, Y24,700] for females, about a 53% reduction for males and 63% for females.

23The price coefficient is α1 +α2 ∗ ln(yi). Since α1 is negative, a positive α2 means the absolute level of price sensitivity is lower
for higher-income households.

24This is derived by φik∂EVi jk
∂ travel timei jm

∗ 1
αi
∗106, as housing price is measured in millions of Y.

25The value of one-minute reduction in commute time is approximately Y1.1, given that VOT is estimated to be 96% of the hourly
wage (at Y67.6 on average). In order for the WTP estimates based on housing demand to align with the VOT estimate, households
would need to expect an average of 500 commuting trips per year for a duration of thirty to forty years.
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Linear Parameters Table 5 reports the coefficient estimates on the population-average utility in Equation

(11) for the specification in Column (3) of Table 4. Columns (1) and (2) use OLS while Columns (3)-(6) use

IVs. All regressions include the month-of-sample by district fixed effects to capture time-varying changes in

local market conditions and amenities that could vary across districts in Beijing. Columns (2)-(6) also include

neighborhood fixed effects to capture unobserved time-invariant neighborhood amenities.

We use three sets of IVs for housing prices: the number of properties that are located in a different

complex and within 3 km of unit j and sold within a two-month window around property j’s sale; the average

attributes of these properties; and the interaction between the average attributes and the odds of winning the

license plate lottery (see Section 2.1 for its policy background). The first two sets of IVs are sometimes called

“donut instruments” in the housing literature (Bayer et al., 2007), because the instruments are constructed from

properties that are located between concentric circles around a given property. Our preferred specification is

Column (6), with a first-stage F-statistic of 14.2.

The price coefficient estimate is negative and statistically significant across all columns. The IV estimates

are larger in magnitude than the OLS estimates, consistent with the finding in the demand literature that

unobserved product attributes bias OLS estimates toward zero. The average price elasticities derived from

the OLS estimates are of the wrong sign, as the population average price coefficient is not negative enough

to offset the positive coefficient of the income–price interaction. The signs on the other coefficient estimates

from the IV regressions in Columns (3)-(6) are as expected: households prefer larger properties and those

closer to key schools but dislike older buildings and housing units far from parks.26

Incorporating the commuting utility EV not only improves the model fit but also has implications for

other parameter estimates, especially the price coefficient and price elasticity. Appendix Table A5 reports the

linear parameter estimates without the EV terms. Both the price coefficient and price elasticities are smaller in

magnitude, consistent with the downward bias arising from the omission of important attributes (EV terms),

as also shown in Timmins and Murdock (2007).

Based on the parameter estimates from our preferred specification (the last set of results in Tables 4

and 5), the income elasticity of marginal driving costs is 0.78 and income elasticity of housing size is 0.10,

respectively.27 To our knowledge, these are the first such estimates for Chinese households. The elasticity of

marginal driving costs is largely consistent with other estimates in the literature (LeRoy and Sonstelie, 1983;

Glaeser et al., 2008), while the elasticity for housing size is somewhat smaller than estimates based on U.S.

data. Using the 2003 American Housing Survey, Glaeser et al. (2008) find the elasticity of lot size to be from

0.25 to 0.5. They argue that these estimates provide an upper bound on the income elasticity of land demand.

In comparison, our elasticity of housing demand is in terms of the condo interior size rather than the lot size,

which might explain the lower values of our estimates.

26While the coefficient of distance to key schools is positive for the base group (borrowers under 30), the coefficients for borrowers
in other age groups are negative and significant, as they are more likely to have school-aged children.

27To calculate these elasticities, we increase household income, re-solve the equilibrium for both the transportation sector and the
housing market (holding housing supply fixed), and calculate the changes in driving costs and housing size.
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Identification and Robustness The identification of linear and nonlinear housing demand parameters closely

follows the demand literature. The choice of nonlinear parameters in Table 4 is largely driven by the model’s

goodness of fit and our preference for a parsimonious model for computational reasons. Appendix Table A6

examines increasingly saturated models, including full interactions between all housing attributes (including

ease-of-commute) and all observed demographics. The key parameters such as price elasticities and random

coefficients for ease-of-commute and model fitness are very similar to our preferred specification, indicating

limited explanatory power for these additional controls.

Turning to the estimation of linear parameters in Table 5, the first IV on the number of nearby properties

and the second set of IVs on these properties’ attributes are the “BLP instrument” (Berry et al., 1995). The

third set of IVs exploits city-wide shocks induced by exogenous policy changes (time-varying winning odds

of license lotteries) that make areas close to city centers and job clusters more attractive.28 The last column

that uses all three sets of IVs is our preferred specification.

To examine the robustness to the choice of IVs, Appendix Table A7 presents parameter estimates for all

combinations of IVs, the test statistics for weak-IV and over-identification tests, as well as the average price

elasticities. The parameter estimates are robust across all columns, with the same sign and similar magnitudes.

Results from the weak-IV and over-identification tests support our IV strategy.

We do not model policy-induced changes in amenities as we lack appropriate measures on retail shops,

restaurants, and entertainment facilities. Any time-varying amenities are absorbed by δ jt , the population-

average utility for property j, and do not affect nonlinear parameters that govern household preference het-

erogeneity, such as the random coefficient for ease-of-commute. We use neighborhood fixed effects and

district-month-of-sample fixed effects to control for policy-induced amenities in estimating linear parameters.

Appendix Section C.4 provides suggestive evidence that amenities might have improved after the subway

expansion, and Section 6.4 discusses the implications of improved amenities.

Lastly, to examine the robustness of our results to the choice sampling method (as described in Section

2.2), we repeat the housing demand estimation with a 0.5% instead of 1% random sample to construct house-

holds’ choice sets. The parameter estimates implied that WTP for housing attributes and housing demand

elasticity are similar across these two samples. See Appendix C.5 for more discussions on the sampling

method and additional estimates.

4.3 Speed–Density Elasticity

To recover the speed–density elasticity (the supply side of the transportation sector), we use hourly data

from remote traffic microwave sensors covering all major roads throughout Beijing in 2014. We focus on

observations during peak hours with traffic density higher than 35 cars per lane-km, which are more relevant

since we focus on commuting trips. We assume that the relationship between speed and density (the right-hand

28The effect of Beijing’s license lottery on the housing market has been documented in Lyu (2022), which validates the lottery
winning odds as an IV. Similar findings have also been reported for Singapore (Huang et al., 2018).
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side of Equation (8)) has a constant elasticity and estimate the following:

ln(vst) = eT,r ∗ ln(Traffic Densityst)+xstβT + εst , (12)

where the unit of observation is a road segment s by hour t, vst is segment s’s speed in km/h, and Traffic Densityst

is measured by the number of vehicles per lane-km. The key parameter is eT,r, the speed-density elasticity that

differs across region r, the ring-road-bands. Vector xst includes weather-related variables (e.g., temperature,

wind speed) and time and spatial fixed effects (e.g., hour-of-day, day-of-week, road segment).

As the regressor ln(Traffic Densityst) could be correlated with the residual due to accidents, road con-

struction, and major events, we construct IVs based on Beijing’s driving restriction policy following Yang et

al. (2020). We construct a dummy for days when vehicles with a license number ending in 4 or 9 are restricted

from driving. The policy generates exogenous variation in traffic density, as far fewer vehicles have license

numbers ending in the digit 4 due to a commonly-held superstition.

To examine potential differences in the speed–density elasticity across regions, we split our sample into

four groups: between the second and third ring roads, the third and fourth ring road band, the fourth and fifth

ring road band, and the fifth and sixth ring road band. Appendix Table A8 shows that the IV estimates are twice

as large in magnitude as the OLS estimates, but Heterogeneity across regions is limited.29 In the counterfactual

analysis below, we use the city-wide elasticity estimate of -1.1 in counterfactual analyses with city-wide

congestion, and ring-road level elasticity for ring-road congestion and ring-road-quadrant congestion, though

results do not change much regardless of which elasticity is used.

5 Counterfactual Simulation Algorithm

Here we briefly explain the algorithm for the counterfactual analyses. Appendix D provides more details.

5.1 Simulating the Counterfactual Equilibrium

Algorithm The counterfactual equilibrium is defined as new vectors of housing prices and travel speeds

{p∗,v∗} that satisfy the market-clearing conditions (Equations (7) and (8)). For each counterfactual analysis,

we iterate Equations (7) and (8) sequentially to find the fixed point {p∗,v∗}.
The iteration process requires us to update the driving speed vector that can be sustained given the existing

road capacity at new traffic density levels. To do so, we use the following formula:

ṽr,i j− vo
r,i j

vo
r,i j

= eT,r ∗
D̃T,r−Do

T,r

Do
T,r

, (13)

29We do not report IV results for Column 4, the fifth to sixth ring road group, since driving restrictions are only implemented for
roads within the fifth ring road. We also estimate this relationship in semi-elasticity form (speed level against log traffic density)
following Vickrey (1965) and report them in Panel B, but do not find qualitatively meaningful differences.
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where r denotes the spatial scope of congestion, either city-wide (in baseline simulations), ring-road specific,

or at the ring-road-quadrant level. ṽr,i j is the counterfactual driving speed for the segment of household i’s

work commute in region r, vo
r,i j is the observed driving speed (see Section 2.2 for its construction), eT,r is the

speed-density elasticity estimate for region r from Equation (12), and D̃T,r and Do
T,r are the counterfactual

and observed traffic density for region r. We update speed, travel mode choices, ease-of-commute, housing

choices, and traffic density via Equations (13), (4), (5), (2) and (6) until we find the fixed point {p∗,v∗}.30

Environmental Considerations The housing demand model does not include local pollution as a neigh-

borhood attribute. Air pollution in Beijing varies less across locations within the urban core than it does from

day to day (Chen et al., 2015). In addition, past work has shown that public awareness of air pollution was

limited before the installation of air quality monitors in 2013 (Barwick et al., 2023). We control for pollution

indirectly using district-and-month-of-sample fixed effects as well as neighborhood fixed effects.

Given the importance of air pollution as a motivating factor in anti-congestion policies, we report welfare

benefits from reduced air pollution as a result of lower congestion. Specifically, the expected air pollution

damage caused by household i in counterfactual simulations can be measured by:

Bi = ∑
j

Pr(Household i buys property j)×Bi j, with Bi j =
K

∑
k=1

V KTi j×EFi jk×MDk,

where Bi j is the pollution damage if household i resides in property j. It consists of three terms: V KTi j

denotes the commuting distance, EFi jk is the emissions factor that converts the kilometers driven into grams

of pollutant k (such as CO2, NOx, and PM2.5), and MDk indicates the marginal damage per gram of pollutant

k, which are derived using an intake fraction approach following the air pollution literature (Apte et al., 2012).

We calculate the decrease in environmental damages resulting from reduced household driving under various

policies, aggregate the impacts across households, and divide them by the number of Beijing households to

obtain the benefit per household.31 See Appendix D.4 for more details.

Fiscal Balance We account for capital and operating costs for subway construction and congestion pricing.

Appendix D.3 presents the source of these numbers. We assume that funds to cover subway costs are raised

via a uniform head tax, and that when toll revenues are redistributed, they are redistributed by a uniform lump

sum, following the standard practice of non-distortionary distributions in the literature.

30While we cannot rule out multiple equilibria in {p∗,v∗} as a theoretical possibility, our simulation analyses always converge to
the same equilibrium outcomes for a given policy, providing empirical evidence for uniqueness in our setting.

31This approach does not account for additional particulate matters produced by road dust.
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5.2 Welfare Decomposition

We now consider the underlying channels that govern welfare changes. Households’ ex-ante welfare is:

Wi = Eεi j

(
max
j∈Ji

Ui j(p,v,cost)
)
,

where p,v,cost are vectors of housing prices, travel speeds, and commuting costs, respectively. Transportation

policies directly affect commuting costs. The total derivative of household welfare with respect to commuting

costs consists of five elements, corresponding to different margins of adjustment:

dW
dcost

=
∂W

∂cost

∣∣∣∣
p=p0,v=v0︸ ︷︷ ︸

(1) direct policy effect

+
∂W
∂v′

∂v
∂cost

∣∣∣∣
ṽ︸ ︷︷ ︸

(2) partial speed effect

+
∂W
∂v′

∂v
∂cost

∣∣∣∣
DT (v∗)=ST (v∗)

− ∂W
∂v′

∂v
∂cost

∣∣∣∣
ṽ︸ ︷︷ ︸

(3) rebound effect︸ ︷︷ ︸
(2) + (3) equil. speed effect

(14)

+
∂W
∂p′

∂p
∂cost

∣∣∣∣
D(p∗,v∗)=1︸ ︷︷ ︸

(4) equil. sorting effect

+
∂W
∂p′

∂p
∂cost

∣∣∣∣
D(p∗,v∗)=S

− ∂W
∂p′

∂p
∂cost

∣∣∣∣
D(p∗,v∗)=1︸ ︷︷ ︸

(5) housing supply effect

.

The first channel, the direct policy effect, measures changes in household welfare when commuters change

their travel mode in response to increasing commuting costs. The housing price, traffic speed, and household

residential locations are fixed at their initial values. The second channel captures the partial speed effect,

where the traffic speed adjusts one time from v0 to ṽ via Equation (13) as households reoptimize their travel

mode choices, without imposition of the transportation sector’s clearing condition. For example, the driving

restriction moves 20% of drivers off the road, which leads to an initial 22% improvement in traffic speed.

These first two channels correspond to short-run effects in some empirical studies that measure the effective-

ness of transportation policies for congestion reduction via the product of implied driving time savings and

VOT (Anderson, 2014; Hanna et al., 2017; Adler and van Ommeren, 2016; Bauernschuster et al., 2017).

The third channel quantifies the additional change in welfare when traffic speeds adjust to clear the trans-

portation sector. As travel speed improves with driving restrictions, people are more likely to drive on days

when their vehicle usage is not restricted, which partially offsets the initial speed gains. This channel is analo-

gous to the rebound effects found in more recent reduced-form papers that account for equilibrium responses

in the transportation sector (Bento et al., 2020). In the analysis below, we refer to the first channel as the direct

effect, the third one as the rebound effect, and the second and third channels together as the equilibrium speed

effect. The fourth channel, the equilibrium sorting effect, incorporates sorting and evaluates changes in wel-

fare when households relocate in response to changes in the commuting utility, with the housing supply held

fixed. The last channel allows housing supply to adjust in response to neighborhood housing price changes.

Before we present the simulation results, we validate the structural model by comparing its predictions

with results in the literature. We simulate the market equilibrium under the 2008 subway network with and

without driving restrictions and examine changes in the model-predicted housing price gradient with respect to
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subway access. Appendix Table A9 shows that the model-predicted change in the price gradient from driving

restrictions is -0.034, consistent with the reduced-form evidence in Jerch et al. (2021).32 This suggests that

our analysis replicates well the documented pattern of price changes from driving restrictions.

6 Counterfactual Results

We compare five policy scenarios: driving restrictions, congestion pricing, subway expansion, and combina-

tions of subway expansion with one of the other two policies. The first two scenarios represent two types of

demand-side policies: a command-and-control approach and a market-based approach, respectively. The third

one is a supply-side policy, while the last two represent combinations of demand- and supply-side policies.

The first scenario follows the actual driving restriction policy implemented in Beijing: a vehicle is prohibited

from driving one day a week. For congestion pricing, we calibrate a distance-based charge (at Y1.13/km) to

achieve the same level of congestion reduction as that from the driving restriction to facilitate comparison.

The subway expansion simulation compares the subway networks in 2008 and 2014. During this period, the

length of the subway network increased from 100 km to 486 km. We conduct the counterfactual analysis us-

ing the 2014 cohort to allow for maximum coverage of the subway expansion. We first simulate equilibrium

outcomes without any transportation policy and gradually introduce different policies.

Sections 6.1 to 6.3 analyze the congestion reduction, sorting patterns, and social welfare in the baseline

scenario when we fix the housing supply and use a city-wide congestion measure. These results are summa-

rized in Table 6. Column (1) presents the scenario with no policies. Columns (2)-(6) describe the differences

in outcomes from each of the five policy scenarios relative to Column (1). All results are shown separately

for households with income above or below the median (high- vs. low-income) to reflect distributional con-

siderations. The average across the two groups delivers the welfare effect per household.

Section 6.4 and Appendix E consider extensions and robustness checks, including variable housing supply,

more granular measures of congestion, removing random coefficients (differences between models with and

without unobserved heterogeneity), accounting for migration and consumption access, and speed variability

across regions.

6.1 Mode Choice and Congestion Reduction

Driving Restriction Panel A of Table 6 examines changes in the travel mode choices and congestion.33 The

driving restriction policy entails two countervailing forces. On the one hand, it moves households off the road

on 20 20% of workdays when driving with personal vehicles is restricted, forcing them to switch to slower

32The coefficient of -0.034 is somewhat smaller in absolute magnitude than the reduced-form analysis in Jerch et al. (2021). This is
partly because the reduced-form result reflects a short-run response while the structural simulation incorporates long-run equilibrium
adjustments (especially the rebound effects) and partly because the data sources and periods are different.

33The mode choice shares are slightly different between Column (1) of Table 6 and Figure 1, because the former reports mode
choices among home buyers in the no-policy scenario while the latter reports mode choices for all residents (including non-
homeowners, or 27.8% of residents in 2010) under existing policies.
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modes. This reduces congestion and increases the driving speed. On the other hand, the improved travel

speed from less congestion induces households whose vehicle usage is not restricted to drive more, especially

among those with a long commute. This rebound effect dampens the congestion reduction from the direct

policy effect. On average, driving restrictions increase traffic speed by 18% from 21.5 km/h to 25.3 km/h.

Congestion Pricing Congestion pricing is levied on a per-kilometer basis. There are three key differences

between congestion pricing and driving restrictions. First, congestion pricing imposes a higher monetary cost

of driving that scales with the distance traveled while driving restrictions lead to a longer travel time. Second,

congestion pricing reduces driving much more than driving restrictions among low-income households and

much less among high-income households, as low-income households are more sensitive to travel costs.

Third, even though both policies lead to the same congestion reduction, a larger share of commuters drive

under congestion pricing. This is because congestion pricing induces a stronger sorting response (more on

this below), with households from both income groups and especially high-income households moving closer

to work. In contrast, the commuting distance under driving restrictions barely changes. Thus, there are fewer

long commutes but more people on the road under congestion pricing than under the driving restriction.

Subway Expansion Despite the immense scale of Beijing’s subway expansion over 2008-2014, it leads to

the smallest congestion reduction among the three policies. Column (4) shows that traffic speed increases

by 7%, only 40% of that under the first two policies. The reason for this muted response is twofold. First,

the reduction in the driving share is smaller under subway expansion than the first two policies. Second, and

more importantly, both high- and low-income households move farther away from work and commute longer

distances as the subway network expands. We discuss the spatial sorting responses in Section 6.2 below.

These results, and especially the one on sorting, point to important channels beyond what has been ex-

amined in empirical studies on the short-run congestion-reduction impact of the subway system (Anderson,

2014; Gu et al., 2020). Our findings are consistent with the prior literature that a) with sufficient time, induced

travel demand increases one-for-one with capacity expansion (Downs, 1962; Duranton and Turner, 2011), and

b) subway expansion itself lowers the cost associated with the commuting distance and increases urban sprawl

(Gonzalez-Navarro and Turner, 2018; Heblich et al., 2020).34 Nonetheless, the subway expansion dramati-

cally increased subway access: the distance between home and the nearest subway station declined by about

80% on average. Subway ridership increased significantly by 51% and 56% among high- and low-income

groups, respectively.

Policy Combinations Column (5) represents Beijing’s actual transportation policy which combines subway

expansion with driving restrictions. Column (6) offers an alternative policy of subway expansion combined

with congestion pricing. We are interested in examining which demand-side policy exhibits stronger com-

34Anas (2024) provides theoretical evidence that road capacity enhancements may increase road usage (VKT) but still lower
congestion even in the long-run.
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plementarity with the supply-side policy. The improvement in driving speed under the policy combinations

is close to the sum of the speed improvements under the individual policies. For example, the speed im-

provement is 3.83 km/h under the driving restriction, 1.49 km/h under the subway expansion, and 5.08 km/h

under the combination of both policies. There may be two countervailing forces at play. First, the supply-

side policy could complement the demand-side policy in that a larger subway network makes substitution

away from driving easier. Indeed, as the subway becomes more attractive, driving restrictions lead to an 8.52-

percentage-point reduction in high-income households’ driving probability under the 2014 subway network in

comparison to a 7.17-percentage-point reduction under the 2008 network. On the other hand, there could be

policy redundancy: some of the driving trips could be reduced under either the supply-side or the demand-side

policy, leading to a smaller aggregate impact than the sum of individual policy impacts.

Congestion pricing exhibits stronger complementarity with subway expansion than driving restrictions

and is more effective in moving people off the road: the speed improvement is 5.29 km/h in Column (6),

higher than the 5.08 km/h improvement in Column (5). Congestion pricing affects both the extensive margin

(whether to drive) and the intensive margin (how far to drive); both effects could be reinforced by subway

expansion. In contrast, the driving restriction primarily operates along the extensive margin.

6.2 Sorting and the Housing Price

Sorting and Household Spatial Distribution Panel B of Table 6 examines the impacts of transportation

policies on households’ spatial distribution. Transportation policies directly affect commuting costs. These

direct changes set in motion a series of behavioral responses whereby households substitute across different

travel modes and adjust their residential locations. We report the average distance to work and to the subway

for both the high- and low-income groups.35 With a fixed housing supply, the average distance to the subway

system across all households remains fixed under both driving restrictions and congestion pricing. If rich

households move closer to subway stations, poor households would be displaced and move farther away from

the subway by construction. We report the average distance to the subway separately for the two income

groups to illustrate this displacement effect.

Different policies lead to different sorting patterns. There are two countervailing forces under driving

restrictions. On the one hand, the policy would incentivize households to live closer to their workplaces. On

the other hand, driving speed improves but it disproportionately benefits long-distance trips. The correlation

between the driving probability and driving distance increases from 0.28 to 0.33 under the driving restriction.

That is, the speed effect undermines households’ incentive to move closer to their workplaces. On net, the

commuting distance remains approximately the same as before, with minimal sorting responses.

In comparison, congestion pricing is distance-based and causes a much higher increase in commuting

costs for longer trips. Hence, both income groups move closer to work, as shown in Column (3). How-

ever, high-income households exhibit a much stronger sorting response for three reasons. First, 41.65% of

35We report straight-line distances, which are not affected by travel mode changes.
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high-income households drive to work, in comparison to 21.44% of low-income households. As a result,

high-income households are much more affected by congestion pricing. Second, high-income households

have a higher WTP for commuting convenience as their VOT is higher. Lastly, properties closer to employ-

ment centers command a housing premium. They are more affordable for high-income than for low-income

households.

Subway expansion generates the strongest sorting responses among the three policies, and these responses

run in the opposite direction to those from congestion pricing. The direct policy effect moves people off the

road as they substitute toward subways. The improved driving speed and expanded subway system reduce the

cost of long-distance commuting by both driving and subway. As a result, both the direct policy effect and

the equilibrium speed effect work in the same direction and disperse households from the city center into the

suburbs and locations near the new subway stations.

Figure 3 plots changes in the average commuting distance for residents in each TAZ relative to the dis-

tance in the no-policy scenario. Driving restrictions lead to modest commuting distance changes that are often

in opposite directions across neighborhoods. The commuting distance is reduced in almost all TAZs under

congestion pricing, suggesting better spatial matches between work and housing locations. The reduction in

commuting distance is most pronounced for TAZs outside the fourth ring road, where the average commuting

distance is 21.9 km, versus 11.9 km for households living inside the fourth ring road. Subway expansion

increases the commuting distance in most TAZs, especially along the new subway lines, exacerbating “waste-

ful” commuting. This further separation of workplace and residence following subway expansion is consistent

with the evidence in Gonzalez-Navarro and Turner (2018) and Heblich et al. (2020).

Both driving restrictions and congestion pricing result in high-income households moving closer to and

low-income households moving further away from the subway in comparison to the baseline as depicted in

Appendix Figure A5. This reflects transit-based gentrification, where lower-income households are priced

out of locations closer to the subway. Beijing’s subway expansion, on the other hand, drastically reduced the

distance to subway stations for both groups: the average distance to the nearest subway station dropped from

5.33 km to 1.19 km for high-income households and from 4.3km to 0.86km for low-income households.

To further examine the sorting pattern, we regress changes in a property owner’s household income due to

subway-expansion induced sorting (as depicted in Panel (c) of Appendix Figure A5) on a property’s distance

to the nearest subway station built between 2008 and 2014. The regression results from Appendix Table A10

suggest that properties that gained access to the expanded subway network experienced significant increases

in household income, suggesting that new owners are richer. These results indicate that people actively sort,

and high-income households outbid low-income households to move closer to newly built subway stations.

Housing Price Changes in housing prices closely mirror the sorting patterns. Appendix Figure A6 exhibits

the housing price responses across neighborhoods. Both driving restrictions and congestion pricing increase

the prices of homes closer to job centers (such as locations inside the fourth ring road and close to the tech and

financial centers), but the impact is stronger under congestion pricing. Subway expansion generates opposite
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spatial impacts: housing prices depreciate near the city center and appreciate in city suburbs along the new

subway lines where public transportation was poor prior to the expansion.36 With both subway expansion and

congestion pricing, the price impacts of subway expansion dominate.

To further illustrate the differential impact of subway expansion on home prices, Appendix Figure A7

plots the housing price gradient with respect to the subway distance separately for the 2008 and 2014 subway

networks. The bid-rent curve is steeper under the 2014 network (-Y1900/m2 per km) than under the 2008 net-

work (-Y700/m2 per km) because the 2014 network is larger and hence the proximity to this network is more

valuable to commuters. The bid-rent curve under the 2014 network shifts down, reflecting the composition

change of homes whereby the subway expansion reaches cheaper homes farther away from the city center.

6.3 Welfare Analysis

Panel C of Table 6 presents the welfare results, including changes in consumer surplus, toll revenue, costs of

subway expansion, and environmental benefits. Figure 4 decomposes changes in consumer surplus following

Equation (14) to illustrate different adjustment margins. Note that the consumer surplus estimates are based

on preference estimates from the housing demand. As a result, they should be interpreted as total consumer

surplus over a property’s life span.37 Housing supply is fixed in this subsection. We consider variable housing

supply and other extensions in Section 6.4.

Welfare Loss from Driving Restrictions First, despite their effectiveness in congestion reduction, driving

restrictions generate a total welfare loss of Y125,700 per household, though high-income households experi-

ence a much steeper reduction than low-income households.38 Driving restrictions force drivers to switch to

slower modes and significantly increase commuting time, especially for households with long commutes. On

average, a household spends 16.8 more minutes commuting each day due to driving restrictions.

Figure 4 decomposes the welfare loss along different adjustment margins, and we present the same anal-

ysis for speed changes in Appendix Figure A8. The direct policy effect of driving restrictions is large and

negative at Y223,200 per household since it distorts commuting choices and forces households to substitute

toward inferior travel modes. As commuters switch to non-driving travel modes, traffic speeds and commut-

ing time improve, mitigating the welfare loss of the direct policy effect, as shown by the second and third

36Under congestion pricing, housing prices in northwestern Beijing would increase by about 2,000 Y/m2, while those in some
southeastern areas would decrease by 2,000 Y/m2 from a baseline average price at 24,022 Y/m2. Under subway expansion, housing
prices increase by about 4,000 Y/m2 in the southwest, where the subway expansion is greatest and historical prices have been lowest.

37We assume that a property lasts for thirty years, which is consistent with the revealed WTP estimates for shorter commutes
documented in Section 4.2. The thirty-year assumption is also motivated by the U.S. Internal Revenue Service’s rules that residential
properties depreciate 3.6% per year and last 27.5 years. We use the U.S. reference as we could not find relevant depreciation rates for
Beijing. Transportation policies are assumed to last over a property’s life span, namely thirty years. The thirty-year assumption does
not affect estimates of consumer surplus. It is relevant for the calculation of toll revenue (net of the expenses of toll collection), the
costs of operating the subway system, and environmental benefits, all of which are discounted over thirty years at a discount rate of
0.98.

38The welfare effect per household is the average between high- and low-income households. According to the Beijing Statistics
Bureau, the average household income in Beijing in 2014 was Y128,000, and Y172,000/Y84,000 for high-/low-income households,
respectively. The annualized loss is roughly 4% of the household income, assuming a thirty-year period.
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bars in Figure 4. The second bar highlights the effect of a partial, or short-run, speed adjustment, while the

third bar represents welfare changes where the driving speed (hence congestion) and travel mode choices are

in equilibrium and clear the transportation sector following Equation (8). The disparity between the welfare

loss linked to the second channel at Y56,000 and the third channel at Y124,900 underscores the importance

of incorporating the rebound effect and allowing for the full equilibrium adjustment of the transportation sec-

tor. Otherwise, the welfare losses could be underestimated by 55% for driving restrictions and welfare gains

overstated by 36%-116% for other policies. The fourth bar further incorporates the sorting effect. With all

four channels incorporated, the welfare loss is at Y125,700 per household.

Welfare Gain from Congestion Pricing Second, before revenue recycling (i.e., toll revenues counted as

government surplus), low-income households experience a greater loss under congestion pricing than under

driving restrictions. This reflects the fact that low-income households are more affected by increases in

monetary costs from congestion pricing than they are by longer commuting times under driving restrictions.

However, when the toll revenue is uniformly recycled across groups (i.e., toll revenues redistributed uniformly

among households), congestion pricing leads to welfare gains for both groups: consumer surplus increases by

Y43,500 and Y68,600 for high- and low-income households, respectively. Low-income households witness

a larger consumer surplus increase than the high-income group partly because they pay a smaller amount in

congestion charges but receive 50% of the revenue. This highlights the role of revenue recycling to abate

distributional concerns from congestion pricing.

In terms of the underlying channels, the direct effect of congestion pricing (with revenue recycling) re-

duces welfare by Y55,500 per household. The equilibrium speed effect (the partial speed and rebound effect)

reverses the welfare loss to yield a welfare gain of Y46,000 per household. As sorting works in the same

direction as the speed effect and moves households closer to their places of work, the welfare gain further

increases to Y56,000 per household. Residential sorting enhances the welfare gain from congestion pricing

by 22%, consistent with the result based on 98 US cities in Langer and Winston (2008).

Welfare Gain from Subway Expansion Third, while the subway expansion from 2008 to 2014 resulted in

limited congestion reduction relative to that under the other two policies, it led to a larger increase in consumer

surplus. Much of this increase comes from improved subway access: the distance to the nearest subway

station declined by 80% on average, and subway ridership increased by more than 50%. Although switching

from non-driving modes to the subway does not alleviate traffic congestion, it improves consumer welfare by

offering better commuting choices. After accounting for the fixed and operating costs of subway expansion,

net welfare is almost halved for high-income at Y119,000 and close to zero for low-income households.

Looking at the different margins of adjustments, the direct effect of subway expansion generates a welfare

gain of Y13,200 per household as a result of improved subway accessibility. The improved driving speed in

equilibrium increases consumer welfare by Y47,800 per household, with the overall welfare gain reaching

Y61,000 per household. Sorting induces households to move away from their workplaces and the city center,
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which increases congestion and dampens the welfare gain to Y58,800 per household.

Welfare Superiority of Policy Combination Fourth, the combination of congestion pricing and subway

expansion achieves the largest congestion reduction (with a 25% speed improvement) and generates the high-

est welfare gain at Y99,400 per household across all policy scenarios. The annualized welfare gains are

equivalent to 3% of household annual income. The revenue from congestion pricing at Y127,700 per house-

hold could fully cover the costs of subway expansion at Y103,000 per household. This finding has broader

applicability for the design of transportation infrastructure outside the context of Beijing.39 While it is dis-

tinct from results in prior work on the role of self-financing toll roads (Mohring and Harwitz, 1962; Winston,

1991; Verhoef and Mohring, 2009), its policy implications may be equally relevant. Our analyses suggest

that welfare gains from infrastructure improvements could be mitigated by induced congestion. Pairing these

investments with pricing instruments such as congestion pricing is critical to successfully address pre-existing

and induced congestion and finance the cost of infrastructure investment to increase social welfare.

The welfare magnitudes discussed above, such as the annualized gains at 3% of household annual income

for the combined policy of subway expansion and congestion pricing, are within the spectrum of welfare

effects for large-scale transportation policies reported in the literature (2.36% in Tsivanidis 2023 and 2.3% in

Kreindler and Miyauchi 2019).

Environmental Benefits Lastly, both reduced driving and improved speeds generate environmental ben-

efits. This is because fewer vehicle kilometers traveled directly reduce tailpipe emissions and improve air

quality. In addition, improved driving speeds increase fuel efficiency and lead to lower emissions per kilo-

meter traveled. The estimated environmental benefits vary between Y1,690 to Y6,030 per household across

policy scenarios. While these benefits are non-trivial, they are much smaller than changes in consumer surplus

and do not affect the relative comparisons across transportation policies.

Importance of Sorting and Endogenous Congestion Panel A of Table 7 reports changes in driving speed

and welfare when we shut down sorting and endogenous congestion. To facilitate comparison, the congestion

price is kept the same as before at Y1.13/km. The first row of Panel A in Table 7 reproduces the baseline

results from Table 6 with sorting. The second row allows the transportation sector to clear but does not

allow households to relocate by shutting down sorting (See Appendix Table A11 for the full results). Sorting

amplifies the effectiveness of congestion pricing but undermines that of subway expansion on congestion

reduction. In addition, sorting increases the welfare gain from congestion pricing by as much as 40% for

high-income households and 16% for low-income households, consistent with Figure 4.

Sorting also has important distributional implications. This is most evident under subway expansion,

where sorting improves the welfare of high-income households at the cost of low-income households. This

39As an example, transportation funds allocated through the US American Reinvestment and Recovery Act of 2008 required several
pilot pricing projects to reuse toll revenues to enhance affected corridors, including public transit (GAO, 2012).
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reflects transit-based gentrification: both high- and low-income households prefer places near the subway, but

higher WTP from high-income households raises prices and displaces low-income households. In contrast,

under congestion pricing, both groups are better off with sorting. This is because work locations differ across

income groups. Thus, sorting, in the form of moving closer to work, moderates housing market competition

across income groups, alleviates congestion, and increases welfare. The opposing effect of sorting under

congestion pricing and subway expansion and the unequal distributional impacts highlight the importance of

accounting for sorting. Otherwise, we risk not only overestimating or underestimating the welfare gains but

also getting the signs wrong and making inappropriate policy recommendations.

The third row of Panel A in Table 7 keeps sorting but shuts down endogenous congestion. To do so, we

adjust the traffic speed once in response to households’ travel mode changes (the second channel in Equation

(14)) but do not impose the transportation sector’s equilibrium condition (8). In other words, we do not

incorporate the rebound effect (the third channel in Equation (14)) and do not allow the full equilibrium

adjustment of the traffic speed. Households sort according to the one-time traffic speed adjustment. The

results echo the point that we made above: without incorporating the full equilibrium adjustment, the speed

improvement would be overestimated by 43%-58%, and the welfare benefit would be inflated even more.

Optimal Congestion Pricing Figure 5 plots changes in welfare as the congestion charge varies. The optimal

congestion charge is Y1.2 per km without sorting, Y1.4 per km with sorting, and approximately the same when

we incorporate both sorting and housing supply. For most levels of congestion charges shown in the figure,

sorting increases consumer welfare by 20%-30%, and housing supply adjustment contributes to another 10%-

20% of welfare gain. In addition, changes in social welfare are positive for a wide range of congestion charges

(<Y2.5/km). This indicates that congestion pricing is likely to be an effective and welfare-improving policy

even when governments cannot gauge the exact optimal pricing level a priori.

6.4 Robustness Checks

Panel B of Table 7 presents five robustness checks based on alternative modeling assumptions and Appendix

E provides a detailed discussion. First, allowing neighborhood-level adjustment of housing supply in response

to policy-induced price changes mitigates the overall price effect and enables more households to move into

desirable neighborhoods, thus magnifying the role of sorting. Second, increasing the granularity of congestion

(such as using ring-road-quadrant-level congestion) and traffic speed responses does not meaningfully affect

our results. Third, excluding unobserved consumer preference heterogeneity (i.e., random coefficients) from

housing demand and travel model choices generates counter-intuitive substitution patterns – the effect of

subway expansion on ridership is substantially muted – and erroneous welfare estimates – welfare losses

(gains) under driving restrictions (subway expansion) are off by an order of magnitude with a wrong sign

for the welfare effect of congestion pricing. Lastly, allowing for urban population growth and incorporating

improved consumption access into welfare analysis does not affect our findings qualitatively.
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7 Conclusion

Transportation plays a critical role in determining residential locations. At the same time, household loca-

tion choices help determine the efficacy and efficiency of urban transportation policies. This study provides

a unified equilibrium sorting framework with endogenous congestion to evaluate the efficiency and equity

impacts of various urban transportation policies. The framework incorporates rich preference heterogeneity

and equilibrium feedback effects between the transportation sector and the housing market.

Our analysis delivers several important takeaways. First, including the utility from the ease-of-commuting

in housing demand dramatically improves the model fit. Having flexible preference heterogeneity, incorporat-

ing sorting responses, and modeling the joint equilibrium of the transportation sector and housing market all

have important implications for the welfare and distributional outcomes. Second, compared to driving restric-

tions, congestion pricing better incentivizes residents to live closer to their work locations. Subway expansion

does the opposite by increasing the separation between residences and workplaces. Third, different policies

generate drastically different efficiency and equity impacts. While driving restrictions reduce social welfare

due to the large distortion in travel choices, congestion pricing is welfare improving for both the high- and

low-income groups with a uniform revenue recycling. The combination of congestion pricing and subway

expansion stands out as the best policy: it delivers the largest congestion reduction and the highest welfare

gains. In addition, the revenue from congestion pricing can fully cover the cost of subway expansion.

Our analysis does not consider the potential implications for the labor market and firm locations, two ad-

ditional channels that affect the long-term urban spatial structure. Incorporating these margins would require

additional data and computational resources. We leave this task for future research.
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Figure 1: Travel Patterns for Commuting Trips from Beijing Household Travel Survey

(a) Year 2010 vs. Year 2014

(b) High-income vs. Low-income Households

Note: This figure plots the trip share, time, costs, and average distance by travel modes for work commuting trips in the Beijing

Household Travel Survey of 2010 and 2014. There are six main trip modes: walk, bike, bus, subway, car, and taxi. Bus and subway

trips could include segments with other modes but we characterize them as bus and subway trips. Trips using both bus and subway

are rare (less than 3% in the data and are dropped in the analysis.) Travel time, cost (defined as % of hourly wage), and distance are

constructed as in Appendix A.3. High-income households are defined as households whose income is greater than the median in the

survey year.
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Figure 2: Housing and Household Attributes from Mortgage Data

(a) Housing Price (Y/m2) (b) Housing Size (m2)

(c) Distance to Work (m) (d) Monthly Household Income (Y)

Note: This figure plots the average housing price and size and household commuting distance and monthly income by Traffic

Analysis Zones (TAZ) based on the 2006-2014 mortgage data. TAZs are standardized spatial units used by transportation planners.

There were 2050 TAZs in Beijing in 2014. Distance to work is the driving distance for all borrowers in the data (including primary

and secondary borrowers when both are present). Monthly household income is measured at the time of purchase. Warmer colors

(red and orange) correspond to larger values while colder colors (dark and light blue) correspond to lower values. TAZs with no

observations are blank.
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Figure 3: Changes in Commuting Distances from Sorting in Counterfactual Simulations (in Meters)

(a) Driving Restriction (b) Congestion Pricing

(c) Subway Expansion (d) Subway Expansion + Congestion Pricing

Note: This figure illustrates simulated changes in commuting distances in meters across TAZs under different counterfactual policies

(relative to the no policy scenario). The results are based on the simulations in Table 6 that allow for household sorting, fix housing

supply, use estimates including random coefficients, and use a single city-wide congestion index. Warmer colors correspond to

increases in commuting distance while colder colors represent decreases. Green lines represent new subway lines built between year

2008 and 2014.
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Figure 4: Welfare Decomposition for Different Transportation Policies

Notes: This figure decomposes welfare changes per household along four adjustment margins. All simulations use a city-wide
congestion index and fix housing supply. For each policy, the bars display the cumulative welfare changes incorporating previous
margins. The direct policy effect measures changes in social welfare when commuters change travel mode in response to increasing
commuting costs, holding housing prices, traffic speed, and residential locations fixed. The partial speed effect allows the driving
speeds to adjust one-time via Equation (13), but does not impose the transportation sector’s clearing condition. The third bar
additionally incorporates the full equilibrium speed effect and additional changes in welfare when traffic speeds adjust further
to clear the transportation sector. The last bar includes household sorting in addition to the three channels above. The welfare
calculations account for subway costs (both construction and operating costs), toll revenues (net of capital and operating costs for
the congesting pricing system), and environmental benefits.

Figure 5: Optimal Congestion Pricing under the 2014 Subway Network

Note: The figure plots welfare changes over different congestion prices under the 2014 subway network, without household sorting

(yellow dotted line), with sorting (orange solid line), and sorting together with housing supply adjustments (blue dashed line).

The welfare calculation uses a city-wide congestion index, accounts for subway costs (both construction and operating costs) and

toll revenues (net of capital and operating costs for the congesting pricing system), but excludes pollution reduction benefits. The

optimal congestion pricing is Y1.2/km without sorting and Y1.4/km with sorting. Sorting increases consumer welfare by 20%-30%,

and housing supply adjustment contributes another 10%-20% for most congestion pricing levels.

39



Table 1: Summary Statistics of Household Travel Survey

2010 2014
N Mean SD N Mean SD

Respondent characteristics
Income: <Y 50k 14780 0.48 0.50 20573 0.18 0.38
Income: [Y 50k, Y 100k) 14780 0.39 0.49 20573 0.44 0.50
Income: >=Y 100k 14780 0.13 0.34 20573 0.38 0.49
Having a car (=1) 14780 0.44 0.50 20573 0.62 0.49
Female (=1) 14780 0.44 0.50 20573 0.43 0.50
Age (in years) 14780 37.59 10.28 20573 38.47 9.84
College or higher (=1) 14780 0.61 0.49 20573 0.64 0.48
Home within 4th ring (=1) 14780 0.51 0.50 20573 0.41 0.49
Workplace within 4th ring (=1) 14780 0.59 0.49 20573 0.50 0.50
Trip related variables
Travel time (hour) 30334 0.87 1.06 42820 0.74 0.98
Travel cost (Y) 30334 2.47 5.55 42820 3.83 6.96
Distance < 2 km 30334 0.25 0.43 42820 0.24 0.43
Distance in [2, 5 km) 30334 0.27 0.45 42820 0.26 0.44

Note: The table reports survey respondent demographics and trip attributes of all work commuting trips within the 6th ring road from
the 2010 and 2014 Beijing Household Travel Survey. Travel time and travel cost are constructed as in Appendix A.3. Trip distance is
measured by straight-lines. Distance<2km and Distance within 2-5km flag commuting trips with a short to medium-distance.

Table 2: Summary Statistics of Housing Data

Mean SD Min Max

Housing attributes
Transaction year 2011 1.89 2006 2014
Price (Y1000/m2) 19.83 9.56 5.00 68.18
Unit size (m2) 92.68 40.13 16.71 400.04
Household annual income (Y1000) 159.71 103.34 6.24 2556.90
Primary borrower age 33.99 6.62 20.00 62.00
Housing complex attributes
Distance to key school (km) 6.05 5.61 0.03 23.59
Complex vintage 2004 8 1952 2017
Green space ratio 0.32 0.06 0.03 0.85
Floor area ratio 2.56 1.12 0.14 16.00
Num. of units 1972 1521 24 13031
Home-work travel variables
Walking distance (km) 14.10 9.51 0.00 62.92
Driving distance (km) 16.13 10.87 0.00 85.22
Home to subway distance (km) 2.13 2.31 0.04 28.37
Subway route distance (km) 15.17 10.70 0.00 68.40

Note: This table reports statistics from the 2006-2014 mortgage dataset. The number of housing transactions is 79,884, all of
which are within the 6th ring road. The dataset is weighted to match the population of all home sales. A housing complex
consists of a group of buildings in the same development. Distance to key school is the distance to the nearest signature
elementary school. Home to subway distance is the distance to the nearest subway station. Subway route distance is the
distance between the two subway stations that are closest to home and work locations.
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Table 3: Estimation Results for Travel Mode Choices

Logit Random coefficient

(1) (2) (3) (4) (5) (6)

Travel time (γ1) -1.194 -0.270 -0.191
(0.082) (0.006) (0.006)

Travel cost/hourly wage (γ2) -1.578 -0.788 -0.565 -1.411 -1.424 -2.531
(0.324) (0.028) (0.034) (0.041) (0.052) (0.065)

Random coefficients on travel time (µγ )
Travel Time -0.955 -0.885 -0.931

(0.008) (0.008) (0.012)
Random coefficients on mode dummies (σm)
Driving 3.394 3.391

(0.049) (0.054)
Subway 4.470

(0.142)
Bus 3.851

(0.056)
Bike 3.887

(0.054)
Taxi 4.203

(0.353)

Mode * year FE Yes Yes Yes Yes Yes Yes
Mode * trip related FE Yes Yes Yes Yes Yes
Mode * demographic FE Yes Yes Yes Yes
Log-likelihood -116,287 -109,929 -91,119 -87,353 -85,099 -77,706

Implied mean VOT 0.757 0.342 0.339 1.760 1.615 0.956
Implied median VOT 0.757 0.342 0.339 1.557 1.429 0.846

Note: The number of observations is 73,154. The specifications include an increasingly rich set of fixed effects interacted with
travel model dummies. Trip related FEs include trip distance bins (e.g., whether the distance is shorter than 2km or between
2-5 km), origin ring road dummies (e.g., whether the trip origin is within the 4th ring road), and destination ring road dummies.
Demographics FEs include a respondent’s age, age squared, gender, education, car ownership, and whether the household has
more than one commuter. The first three specifications are multinomial logit while the last three add random coefficients. The
distribution of preference on travel time is specified as a chi-square distribution (winsorized at the 5th and 95th percentiles)
with three degrees of freedom to allow for long tails. The random coefficients on travel mode dummies (driving, subway, bus,
bike, and taxi) are assumed to have a normal distribution with a standard deviation of σm. The last two rows report the implied
mean and median value of time (VOT). Robust standard errors based on the sandwich formula are reported in parentheses.
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Table 4: Housing Demand - Nonlinear Parameters from Simulated MLE

No EV With EV EV and random coef.
(1) (2) (3)

Para SE Para SE Para SE

Demographic Interactions
Price (Ymill.) * ln(income) 0.965 0.007 1.005 0.014 1.030 0.016
Age in 30-45 * ln(distance to key school) -0.329 0.004 -0.391 0.011 -0.420 0.013
Age > 45 * ln(distance to key school) -0.074 0.009 -0.111 0.025 -0.123 0.026
Age in 30-45 * ln(home size) 1.343 0.014 1.443 0.026 1.486 0.030
Age > 45 * ln(home size) 2.394 0.028 2.665 0.070 2.746 0.060
EVMale 0.708 0.015 0.755 0.016
EVFemale 0.833 0.017 0.893 0.019
Random Coefficients
σ(EVMale) 0.379 0.019
σ(EVFemale) 0.482 0.018
Log-likelihood -206829 -170057 -168808

Note: This table reports MLE estimates of the nonlinear parameters in housing demand using mortgage data from 2006-2014 with
77,696 observations. The ease-of-commuting utility (EV ) is constructed using Column 6 of Table 3 via Equation (5). The first
specification does not include EV , the second specification does, and the third specification further incorporates random coefficients
on EV terms. Standard errors are bootstrapped to account for the estimation errors in EV terms.

Table 5: Housing Demand - Linear Parameters

OLS OLS IV1 IV2 IV2+IV3 ALL
(1) (2) (3) (4) (5) (6)

Price (Ymill.) -2.24 -2.191 -7.091*** -6.283*** -6.454*** -6.596***
(0.186) (0.184) (1.640) (0.867) (0.583) (0.534)

Ln(home size) -3.648 -3.797 4.721 3.331** 3.631*** 3.879***
(0.257) (0.261) (2.927) (1.505) (1.022) (0.969)

Building age -0.043 -0.029 -0.144*** -0.125*** -0.129*** -0.132***
(0.007) (0.006) (0.040) (0.020) (0.014) (0.013)

Floor area ratio -0.006 -0.009 -0.019 -0.023 -0.023 -0.023
(0.034) (0.025) (0.036) (0.032) (0.033) (0.034)

Ln(dist. to park) 0.21 0.074 -0.475** -0.389*** -0.408*** -0.424***
(0.069) (0.057) (0.222) (0.117) (0.101) (0.103)

Ln(dist. to key school) 0.95 0.782 0.210 0.323** 0.304** 0.288**
(0.080) (0.137) (0.213) (0.139) (0.121) (0.118)

District-month-of-sample FE Y Y Y Y Y Y
Neighborhood FE Y Y Y Y Y

First-stage Kleinberg-Paap F 9.88 10.48 14.22 14.22
P value: overidentification test 0.03 0.10 0.19

Avg. Housing Demand Price elasticity -2.42 -1.40 -1.61 -1.79

Note: The number of observations is 77,696. The dependent variable is the population-average utilities recovered using parameter
estimates in Column (3) of Table 4. The first two columns are OLS estimates and the last four are IV estimates. The floor area ratio
of a residential complex is total floor area over the complex’s parcel size and measures complex density. Distance to key school is
the distance to the nearest key elementary school. IV1 is the number of homes that are within 3km from a given home, outside the
same complex, and sold in a two-month window. IV2 is the average attributes of these homes (building size, age, log distance to
park, and log distance to key school). IV3 is the interaction between IV2 and the winning odds of the license lottery. The winning
odds decreased from 9.4% in January 2011 to 0.7% by the end of 2014. Column (6) uses all IVs. Standard errors are bootstrapped to
account for the estimation errors in EV terms and clustered at the neighborhood level.
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Table 6: Simulation Results with Household Sorting

2008 Subway Network 2014 Subway Network
(1) (2) (3) (4) (5) (6)

No Policy Driving restriction Congestion pricing Subway Expansion + Driving restriction + Congestion pricing
∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1)

Income relative to the median High Low High Low High Low High Low High Low High Low

Panel A: travel mode shares in percentage points and average speed
Drive 41.65 21.44 -7.17 -3.4 -3.48 -5.39 -2.14 -1.66 -8.52 -4.62 -5.2 -6.4
Subway 9.02 10.77 1.29 0.7 0.84 0.96 4.62 6.06 5.79 6.44 5.24 6.83
Bus 22.44 30.47 1.78 0.6 0.57 1.24 -1.54 -2.53 0.31 -1.57 -0.76 -1.03
Bike 15.96 24.01 1.6 0.8 0.77 1.78 -0.8 -1.64 0.52 -0.94 -0.13 -0.13
Taxi 2.2 1.32 1.19 0.55 0.63 0.57 -0.16 -0.11 0.89 0.36 0.39 0.36
Walk 8.74 11.99 1.31 0.74 0.67 0.83 0.02 -0.13 1.01 0.32 0.46 0.37
Avg. Speed (km/h) 21.49 3.83 3.83 1.49 5.08 5.29

Panel B: sorting outcomes
Distance to work (km) 18.56 15.66 0.01 0.01 -0.17 -0.06 0.36 0.18 0.41 0.17 0.15 0.12
Distance to subway (km) 5.33 4.3 -0.03 0.03 -0.03 0.03 -4.14 -3.44 -4.14 -3.44 -4.14 -3.44

Panel C: welfare changes per household (thousand Y)
Consumer surplus (+) -227.1 -32.7 -98.2 -73.1 220.3 100 -14 64 108.7 28.7
Toll revenue (+) 137.4 137.4 127.7 127.7
Subway costs (–) 103 103 103 103 103 103
Pollution reduction (+) 4.25 4.25 4.25 4.25 1.69 1.69 5.79 5.79 6.03 6.03
Net welfare -222.8 -28.4 43.5 68.6 119.0 -1.3 -111.2 -33.2 139.4 59.4

Note: Simulations use the 2014 cohort (households who purchased homes in 2014) and are based on parameters reported in Column (6) of Table 3, Column (3) of Table 4, and
Column (6) of Table 5. We incorporate household sorting but fix the housing supply and use a city-wide congestion index. Consumer surplus estimates are based on housing demand
and travel mode preference estimates and should be interpreted as total consumer surplus over a property’s life span. Toll revenue is net of the capital and operating costs of revenue
collection. Subway costs include construction and operation costs. Welfare benefits from pollution reduction arise from reduced tailpipe emissions. Toll revenue, subway costs,
and environmental benefits are the discounted sum over thirty years (which is approximately the lifespan of a property) and allocated uniformly across households. Net welfare is
consumer surplus plus toll revenue and environmental benefits minus subway costs. Column (1) reports results when no policy was in place. Columns (2) to (6) present differences
from Column (1). Driving restriction prohibits driving in one of five work days. Congestion pricing is set at Y1.13 per km to generate the same speed improvement as the driving
restriction. High-income households are those with income above the median. See Appendix Section D for more details on the simulation procedure.
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Table 7: Importance of Sorting, Endogenous Congestion, and Extensions: Changes in Speed and Welfare Per Household

Driving restriction Congestion pricing Subway expansion

∆ Speed ∆ Welfare (Y1000) ∆ Speed ∆ Welfare (Y1000) ∆ Speed ∆ Welfare (Y1000)

Income relative to the median (km/h) High Low (km/h) High Low (km/h) High Low

Panel A: sorting and endogenous congestion
With sorting (main results) 3.83 -222.8 -28.4 3.83 43.5 68.6 1.49 119.0 -1.3
Without sorting 3.82 -223.1 -26.8 3.61 32.1 59.6 1.76 106.7 16.0
With sorting but without endogenous congestion 5.47 -107.3 -4.4 5.15 118.1 81.0 2.36 158.8 6.4

Panel B: extensions and robustness checks
With sorting and housing supply response 3.85 -225.5 -27.9 4.02 56.3 72.8 0.95 64.0 -16.0
With ring-road-quadrant-level traffic density 3.46 -239.4 -31.8 3.38 24.7 67.5 1.25 104.9 -4.8
Without random coefficients 4.59 -1447.6 -338.0 4.59 -406.9 -3.6 1.61 15.5 -42.5
With migration 4.65 -193.4 -22.6 4.63 77.1 75.7 0.73 82.0 -8.5
With consumption access 3.83 -297.8 -43.5 3.83 56.4 89.8 1.49 191.6 31.6

Note: This table examines speed and welfare implications under various extensions. Each cell reports changes relative to the no-policy scenario. Speed without any policy is
21.49 km/h. The unit of welfare changes per household is Y1,000. Congestion pricing is fixed at Y1.13 per km as in Table 6. The first row in Panel A summarizes results in
Table 6. Panel A examines the importance of sorting and endogenous congestion. “Without sorting” holds residential locations fixed and does not impose the housing market
clearing condition. “With sorting but without endogenous congestion” keeps sorting but shuts down endogenous congestion. To do so, we adjust traffic speed once in response
to households’ travel mode changes via Equations (4) and (13), but do not impose the transportation sector’s equilibrium condition. Panel B relaxes modeling and simulation
assumptions. “With sorting and housing supply response” assumes that the housing supply responds to neighborhood average price changes at a constant price elasticity of
0.53. “With ring-road-quadrant-level traffic density” solves the endogenous traffic density/congestion at the ring-road-quadrant level as described in Sec 2.3. “Without random
coefficients” re-estimates the model and repeats the counterfactual analyses with no random coefficients. “With migration” assumes 5% more vehicles (in-migration) under the
subway expansion and 5% fewer vehicles (out-migration) under the driving restriction and congestion pricing. “With consumption access” incorporates an additional 33% of
changes in consumer surplus through consumption access (easy access to amenities) following Miyauchi et al. (2021).
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Chapter 2: Online Appendix

Online Appendix
“Efficiency and Equity Impacts of Urban Transportation Policies with

Equilibrium Sorting”
Panle Jia Barwick Shanjun Li Andrew Waxman Jing Wu Tianli Xia

Outline This online appendix is organized into the following sections. In Section A, we compare our dataset

to datasets used in recent urban and transportation studies, discuss the travel surveys and housing transaction

data in detail. Section B presents empirical evidence on residential sorting in response to transportation poli-

cies and that job locations are typically determined before residential locations. In Section C, we provide a

detailed description of the estimation process for the travel choice model and housing demand model. We

also discuss identifying variation and robustness analyses, including the choice set for housing demand and

endogenous amenities. Section D explains the algorithm employed for the counterfactual simulation exercise,

underlying assumptions, as well as the calculation of costs associated with implementing various transporta-

tion policies and environmental benefits resulting from congestion reduction. Lastly, in Section E, we discuss

in detail five robustness checks to various modeling assumptions.

A Data Appendix

A.1 Comparison to Datasets in the Literature

The data compiled in this paper combine granular data from multiple sources and provide, to our knowledge,

the most comprehensive description of commuting patterns and residential locations in Beijing used in the

economics literature. For commuting patterns, we exploit two waves of a representative household travel

survey that report detailed home and work geocodes that were subsequently validated. We combine the

travel surveys with historical maps of the subway system in Beijing and GIS software to construct historical

commute time and costs from home doorstep to workplace for different travel mode options. This involved

millions of Application Programming Interface (API) inquiries (Gaode for buses and Baidu Maps for driving,

biking, and walking) to trace commuting routes for all travel modes and all households in the travel survey,

and again separately the commuting routes in our mortgage data for all households and properties in their

choice sets.

To improve the accuracy of predicted speed responses in counterfactual simulations, we estimate the

speed-density relationship using real-time traffic volume and speed data in two-minute intervals from over

1,500 remote traffic microwave sensors covering all major roads for 2014. We follow the best practice to

model the effect of congestion that has been adapted to transportation economics from the engineering litera-

ture (Anderson, 2014; Anderson and Davis, 2018; Yang et al., 2020; Kreindler, 2018; Tarduno, 2022).
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Our use of API requests echoes several recent papers using Google Maps to construct representative

commuting data (Akbar et al., 2023; Akbar, 2020; Gorback, 2020). However, these studies draw random

latitude and longitude points to match the distribution of home and work locations in a city rather than using

real home and work location pairs for actual households as we do in our study.

Some studies avail themselves of representative household travel survey data for travel mode choices but

are limited to aggregated geographical information for constructing commuting patterns. For example, the

US National Household Travel Survey (NHTS) provides researchers with confidential micro-data at the zip

code level. The US Census Longitudinal Employer-Household Dynamics (LODES) database is aggregated

to Census blocks (Tyndall 2021; Severen 2023). In this regard, the combination of detailed household demo-

graphics, commuting mode choices, and exact home and work addresses makes our data unique not just for

Beijing but for most transportation studies that model households’ commuting decisions.

Other studies use granular cellphone data to recover the origins and destinations of commuting trips but

make assumptions on demographics based on trip locations (Miyauchi et al., 2021; Kreindler and Miyauchi,

2019; Gupta et al., 2022). These data have extremely fine spatial granularity and provide a unique opportunity

to describe the economic effects of transportation on neighborhoods within cities. On the other hand, they

have limited ability to accurately predict individuals’ commuting mode choices or decompose welfare effects

by different socioeconomic groups (as demographic information is unobserved and instead inferred).

A.2 Beijing’s Geography

Beijing’s spatial structure is characterized by high population density at the center, with a set of concentric

ring roads encircling the city center. The second ring road largely traces the city limits of pre-1980s Beijing,

from which the city has subsequently expanded outward. We focus on the geographical areas within the sixth

ring road, which approximately separates the urban core from the suburbs. Appendix Figures A9 and A10 map

out the city contour and various ring roads, commercial centers (with a greater density of job opportunities),

subway lines, districts, and amenities including signature elementary schools and parks.

In addition to a vibrant downtown with many job opportunities, Beijing has several large work clusters

across the city, such as the financial cluster between the second and fourth ring roads on the east side of the

city and a high-tech cluster toward the northwest between the third and fifth ring roads. The city has 65 key

schools designated by the municipal government as the key elementary schools. These schools have better

resources and better student performance. Signature schools are concentrated within the fourth ring road,

while parks are more dispersed across the city.

Beijing has a total of 18 districts, each containing on average nine jiedao (neighborhoods). A jiedao is an

administrative unit, similar to but larger than a census tract. The average size of a jiedao is 15.7 square km.

For transportation planning purposes, Beijing is also divided into roughly 2,000 traffic analysis zones (TAZs),

which are standardized spatial units based on residential and employment density. TAZs are one square

kilometer on average and their size is inversely proportional to the density of trip origins and destinations: the
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TAZs are smaller when they are closer to the center of Beijing. Most of the maps in this paper use TAZs as

the spatial unit.

A.3 Beijing Household Travel Survey (BHTS)

BHTS is designed to be representative using a multistage cluster sampling of households in Beijing. In the

first stage, the Beijing Transportation Research Center (BTRC) randomly selects a subset of TAZs from the

entire city. For the first stage of sampling, BTRC selected 642 out of 1,191 TAZs in 2010 and 667 out of

2,050 TAZs in 2014, respectively. In the second stage, about 75 and 60 households were randomly selected

for in-person interviews for each TAZ.

BHTS includes detailed individual and household demographics (e.g., income, household size, vehicle

ownership, home ownership, age, gender) and occupations, availability of transportation options (vehicles,

bikes, etc.), and a travel diary on all trips taken during the preceding 24 hours. Household income is re-

ported in bins and we use bin midpoints to measure income. The 2010 survey contains 46,900 households,

116,142 individuals, and 253,648 trips, while the 2014 survey contains 40,005 households, 101,827 individu-

als, 205,148 trips. We dropped trips with the origin or destination that could not be geocoded (40%), trips on

weekends and holidays (10%), trips of non-working aged respondents (age> 65 or age <16, 12%), trips using

mixed travel modes among subway, bus, and driving (3%), and trips with implausible trip distance and travel

time (3%). The remaining sample includes 78,246 trips by 29,770 individuals in the year 2010 and 98,730

trips by 38,829 individuals in the year 2014.

Our analysis focuses on 73,154 work commuting trips (home-to-work and work-to-home). Work trips

constitute 62% and 75% of the total travel distance and 53% and 59% of the weekday trips among working-

age respondents in 2010 and 2014, respectively. Table 1 provides summary statistics for variables used in

the analysis by survey year. Household income increased dramatically from 2010 to 2014, with the share

of the lowest income group (less than Y50,000 annually) decreasing from 48% to 18%. The proportion of

households owning vehicles increased from 44% to 62%. The share of respondents living and the share

of those working within the fourth ring road (which proxies for the city center) both decreased by about 10

percentage points from 2010 to 2014, reflecting the increased spatial dispersion of housing and work locations.

Travel Survey Data Construction Below we describe the procedures we used to clean the 2010 and 2014

BHTS, geocode home and work addresses, and construct commuting routes for trips in the BHTS data and

hypothetical trips in the mortgage data. The notation in this appendix follows as closely to that in the main

text as possible.

We use Baidu’s API to geocode addresses because its quality of matching Chinese character strings is

higher than alterantive APIs such as Google Maps. We found that Baidu’s Geocoding API performed best for

home addresses and its Place API performed best for work addresses. About 36% of 2010 respondents and

44% of 2014 respondents are dropped because their home or work addresses cannot be geocoded.
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We focus on six commuting modes: walk, bike, bus, subway, car, and taxi. In principle, a traveler could

take arbitrary combinations of different travel modes. In our data, single-mode trips account for over 95% of

all trips. We therefore eschew multi-mode commuting trips, except for subway and bus trips where we allow

commuters to walk to and from subway stations and bus stops. So the trip time for the bus and subway trips

includes the walking time. The size of the choice set varies across commuters and trips. Walk, bike, taxi,

and subway modes are available for all trips. Driving is available for households with personal vehicles on

non-restricted days. Car rental is uncommon in Beijing and the mode share of rental cars is nearly zero in the

travel survey. We assume that households walk to/from the nearest subway stations if they take subways. Bus

availability is determined by the home and work locations. We remove bus from the choice set if Gaode Maps

API fails to provide any bus route, indicating a lack of the public bus service in the vicinity.

The construction of the travel time and distance via API and GIS is illustrated in Appendix Figure A11.

Appendix Figure A12 shows travel time and cost of six routes for a particular trip based on the procedure. We

use the Baidu API to calculate the travel time and distance for walking, biking, car and taxi trips. Baidu Maps

incorporates the predicted congestion level based on the time of day and day of week in its estimated trip

duration. We query the Baidu API at the same departure time as that recorded in the travel survey (e.g., 7 am)

to capture within-day variation in congestion (i.e., at peak vs. off-peak hours). To account for changes in the

average congestion between the survey year and the year that we query the Baidu API, we adjust the predicted

driving, taxi, and bus travel times based on the historical traffic congestion index (e.g., a 10% difference in

the traffic congestion index is associated with a 10% adjustment of the travel time). The driving speed is the

ratio of the travel distance to the travel time.

We use the Gaode Map API to calculate the travel time by bus because it reports the number of transfers

and walking time between bus stops and delivers more accurate estimates than Baidu. For subway commuting,

we identified the nearest subway stations to home and to work using ArcGIS maps of the historical subway

stations and used Baidu’s API to calculate walking distances and time from home and work to the nearest

subway station. For the BHTS travel survey data, the subway commuting time is calculated using the historical

subway system at the time of the survey, including additional time when transferring lines. For hypothetical

trips considered by home buyers in the mortgage data, we assume buyers are forward-looking and use the

subway network two years after the home purchase date. This is because the subway construction goes

through a lengthy process and it takes a few months to a few years from the the public announcement of

subway station locations to the actual operation. Households are likely to be aware of new subway stations

in the near future and we allow households to consider this in their purchase decisions. We also conduct a

robustness check using a one-year projection window in constructing subway time and obtain similar results.

The constructed travel distances and reported travel distances of chosen modes in the final dataset are

highly correlated (correlation= 0.81). Correlation is highest among walking trips (0.99), followed by bicycle

trips (0.98), subway trips (0.94), bus trips (0.88), car trips (0.61), and taxi trips (0.49).

The monetary cost for walking is zero. For biking, the cost is zero if a household has a bike and the

rental price (free for the first hour and then Y1 per hour with Y10 as the maximum payment for 24 hours)
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otherwise. The bus fare is set by the municipality at 0 for senior citizens, Y0.2 for students, Y0.4 for people

with public transportation cards, and Y1 for people without public transportation cards. The subway cost per

trip is set by the public transport authority at Y2 and adjusted by the type of public transportation card the

traveler holds. Fuel cost is a major component of the monetary cost associated with driving. Based on the

average fuel economy reported by vehicle owners in BHTS, we use 0.094 liter/km (10.6 km/liter) for 2010,

and 0.118 liter/km (8.5 km/liter) for 2014. Gasoline prices are Y6.87/liter in 2010 and Y7.54/liter in 2014.

We also assume a tear-and-wear cost which is 0.3 yuan per km. In 2010, the taxi charge is Y10 for the first 3

km, Y2 for each additional km, and Y1 for the gasoline fee. In 2014, the charge increases to Y13 for the first

3 km, Y2.3 for each additional km plus Y1 for the gasoline fee.

Recall Bias Beijing’s travel survey records self-reported travel time. In Appendix Figure A13, we compare

the self-reported travel time with the travel time constructed using Gaode/Baidu as a function of distance.

Notably, the self-reported travel time exhibits a considerably flatter trend compared to the constructed travel

time. It shows a modest increase as the trip length grows and tilts downward for trips longer than 35 km.

More importantly, the self-reported travel time is significantly lower than the constructed travel time for the

majority of commuting trips. These patterns suggest that people tend to hold a positive bias towards the

chosen transportation mode and underestimate the actual travel time for longer trips. In light of this, we use

the constructed travel times in most of the analyses and use the reported time as a robustness check.

A.4 Mortgage Housing Transaction Data

As part of the social safety net, the mortgage program aims to encourage home ownership by offering prospec-

tive homeowners mortgages with a subsidized interest rate. Similar to the retirement benefit, employees and

employers are required to contribute a specific percentage of the employee’s monthly wage to a mortgage

account under this program. The savings contributed to this account can only be used for housing purchases

and rental. Workers with formal employment were eligible for this government-backed mortgage program,

upon which our data are based.

Although the mortgage data have a good representation of Beijing’s middle-class, they under-represent

low-income households without employment and high-income households who do not take loans for home

purchases. To increase the representativeness of the mortgage data, we re-weight them based on two larger

datasets that are more representative of home buyers in Beijing.

The first dataset include sales of new properties that are compiled from home registration records from

Beijing Municipal Commission of Housing and Urban-Rural Development, accounting for 90% of all new

home sales. It does not include employer-provided/subsidized housing. The second dataset includes 40% of

all transactions in Beijing’s second-hand market during our data period and is sourced from China’s largest

real estate brokerage company, Lianjia, that is present at all neighborhoods and across housing segments (Jerch

et al., 2021). Different from the mortgage data, these datasets do not include information on the work location
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of the owners, therefore preventing us from using it for the main empirical analysis. To ease explanation

below, we call these two larger transaction datasets “population dataset”.

To improve the representativeness of the mortgage data, we match the distributions of housing price, size,

age, and distance to the city center in the mortgage data to those in the population dataset using entropy bal-

ancing following Hainmueller (2012). Specifically, we solve the following constrained optimization problem

to match sample moments between the mortgage data and the population dataset:40

min
wi

H (w) = ∑
i

h(wi) = ∑
i

wi log(wi) (A1)

subject to balance and normalizing constraints:

1
N ∑i∈new homes wi(X

mortgage
i j −µ

mortgage
j )r = Enew homes[(X j−µ j)

r]

1
N ∑i∈resales wi(X

mortgage
i j −µ

mortgage
j )r = Eresales[(X j−µ j)

r]

∑i wi = N = total number of new homes + resales in the mortgage data

wi ≥ 0 for all i.
∑i∈new homes wi

∑i∈resales wi
= E

[new homes
resales

]
Here wi is property i’s weight, ∑i∈new homes wi(Xi j − µ j)

r is the rth order (weighted) moment of matching

covariate X j among new home transactions in the mortgage data, and Enew homes[(X j− µ j)
r] is the rth order

moment of covariate X j among new home transactions in the population dataset. Similarly, ∑i∈resales wi(Xi j−
µ j)

r is the rth order moment of covariate X j among second-hand housing transactions in the mortgage data,

and E(X j−µ j)
r
resales is the rth order moments among used properties in the population data.

Matching covariates include housing prices, sizes, building ages, and distances to city center. We match

both the mean and variance (r = 1 and r = 2). The third constraint normalizes the sum of weights to the total

number of homes in the mortgage dataset (which is N). The fourth constraint requires weights to be positive.

The last constraint requires the ratio of new homes to resales to be the same as the official statistics provided

by Beijing Municipal Commission of Housing and Urban-Rural Development. We solve for optimal weights,

w∗i using the entropy package in STATA. The re-weighted mortgage data match the larger representative

datasets quite well. In all the empirical analysis, we use the re-weighted the mortgage data to better represent

home buyers in Beijing.

40The objective function, h, is a special case of a Kubelock divergence function, where the base weight, which wi within the
logarithm is divided by, is set to 1.
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B Reduced-form Evidence

B.1 Evidence on Sorting

To provide direct evidence on sorting in response to transportation policies, we examine whether people are

more likely to purchase properties in neighborhoods near new subway stations post subway expansion via an

event study. The dependent variable is the fraction of home buyers who purchase a house in neighborhood n

conditional on buying a house at time t:

Sharent =
#Houses sold in neighborhood n at time t

#Total houses sold at time t
.

We define two groups of neighborhoods: neighborhoods with new subway stations in the sample period

2008-2014 (treated), and those without (never treated). The key regressor is variable 1{subwaynt}, which

takes the value one if a new subway station opens within 1 km of neighborhood n in year t. Results are

robust to different cutoffs such as 0.5 km and 2 km. We regress the fraction of home buyers purchasing from

neighborhood n on periods before and after nearby subway station openings and control for neighborhood and

year fixed effects in a two-way fixed effects (TWFE) model:

Sharent =
k=2

∑
k=−4,k 6=−1

1{subwayn,t−k}βk +λn +Tt + εnt ,

where the time periods that are two years or more after the expansion are grouped as k = 2, and time periods

that are four years or more before the expansion are grouped as k = −4. Given the bias in TWFE models

(Goodman-Bacon, 2021) in the presence of treatment effect heterogeneity with staggered rollout, we report

the CSDID estimates following Callaway and Sant’Anna (2021) (CSDID) in Figure A14.

The introduction of new subway stations in a neighborhood led to a significant increase in the proportion

of total housing purchases attributed to that neighborhood. Prior to the subway expansion, the average market

share of the neighborhood was represented by the dashed blue line at 0.7%. However, after the subway

expansion, neighborhoods that gained subway stations experienced a treatment effect of 0.5 percentage points,

which translates to a 70% increase.

We acknowledge that this estimate has certain limitations. The observed increase is likely influenced

by housing supply responses as well as spillover effects across neighborhoods, with houses in areas without

subway stations becoming less desirable. Despite these limitations, this figure provides compelling evidence

of sorting. The adjustments in housing supply and the spillovers across neighborhoods are consequences of,

and responses to, household sorting in relation to the availability of subway access.

B.2 Work Locations and Home Locations

The analysis in the main text assumes that work locations are exogenous. This is driven by data limitations

and computational feasibility. Here we provide evidence that property purchases are often consequences of
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job changes, not vice versa, lending support to our modeling assumption where a household chooses housing

location conditional on the job location. For this exercise, we merged our mortgage data with a restricted-

access dataset on linked employer-employee history covering the majority of employees in Beijing’s formal

sectors to examine both job changes and property purchases, building on (Gu et al., 2021). The restricted-

access dataset includes 268 million employee-month observations for 6.5 million employees. See (Gu et al.,

2021) for more details.

In raw data, 60% of the home buyers started a new job within three years prior to purchasing the home.

Below we present event studies where an event is either a job change or a home purchase. We denote a job

change for employee i in month t as 1{Job}it = 1 and a home purchase (more accurately, the month when i

initiates a mortgage application) by 1{Home}it = 1.

The event study on job changes regresses the job change indicator on lags and leads for home purchase

and controls for employee and month fixed effects:

1{Job}it =
12

∑
s=−12

βs ·1{Home}i,t−s +αi +δt + εit ,

where the periods before -12 and after 12 are grouped with s = −12 and s = 12, respectively. The standard

errors are clustered by employee. For comparison, we repeat the regression with 1{Home}it as the dependent

variable and dynamic lag and leads of job change as the control.

Panels (a) and (b) of Figure A15 present the raw data patterns. It is evident that job changes were much

more likely to occur prior to home purchases. The probability of a job change decreased sharply upon home

purchase and remained low afterwards. Mortgage applications display a nearly opposite trend: the probability

of buying a home remains steady before a job change and increases substantially after a job change. The event

studies in panels (c) and (d) confirm these raw data patterns. The probability of a job change exhibits a break

and a sharp decline surrounding home purchases, while the probability of a home purchase jumps following a

job change. There seems to be an anticipation effect, as some individuals began purchasing properties a few

months before the actual job change.

These results provide evidence that job changes tend to precede home purchases, rather than the other

way around. While the likelihood of a job change is significantly higher before a home purchase, the opposite

does not hold true for home purchases. The probability of a home purchase before a job change is lower,

not higher. In other words, our assumption of endogenous home locations while treating work locations as

exogenous appears to be supported by the data.

Lastly, it is worth noting that while we hold work locations fixed, we incorporate neighborhood fixed

effects in the housing demand analysis. This accounts for the fact that certain houses are more centrally

located and closer to job clusters, making them potentially more valuable to households.
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C Estimation Details

C.1 Estimating Travel Mode Choices

To recover preference parameters in travel model choices, we use simulated maximum likelihood. The nota-

tion follows that in Section 3.2 of the main text. The log likelihood function is defined as:

lnL (γ,η ,θ) = ∑
i

Mi

∑
m=1

I
i
mlnRi jm(γ,η ,θ) where

Ri jm(γ,η ,θ) =
1
H

H

∑
h=1

exp
(
ūi jmh(γ,η ,θ)

)
∑k exp

(
ūi jkh(γ,η ,θ)

)
where i denotes survey respondents, j denotes home locations, m is the travel mode, and Mi includes

modes available to commuter i. The indicator function I
i
m takes value one if commuter i chooses travel mode

m. The mode choice probability is denoted by Ri jm and calculated by averaging over H = 100 vectors of

Halton simulation draws. Utility ūi jmh(γ,η ,θ) is similar to Equation (3) but without the error term: ūi jmh =

θimh+γ1ih · timei jm(vi j)+ γ2 ·costi jm/yi+wi jmη , where h and {θimh,γ1ih} refers to the hth Halton draw. In the

estimation, we leverage the fact that we observe the round trips for work commute and use the same simulation

draw for the two trips by the same commuter to capture the mode-specific preference for each individual.

The parameter estimates γ̂, η̂ , θ̂ maximize the simulated log-likelihood defined above. Once we have

these estimates for the commuting preference, we plug them in the housing transaction data and calculate the

ease-of-commuting measure EVi j for each i and j pair based on the observed housing and job locations via:

EVi j =
1
H

H

∑
h=1

log
(

∑
m

exp
(
ūi jmh(γ̂, η̂ , θ̂)

))
and include it as a housing attribute in the estimation of housing demand below. Importantly, we construct the

EV term separately for husband and wife and include both in the housing demand.

C.2 Identification of Travel Demand and Measurement Errors

The identification of the preference parameters for the travel mode choices follows the standard identification

arguments of the random coefficient discrete choice models. Specifically, the parameters are identified by the

variation in commuters’ characteristics and route attributes, as well as the correlation between these attributes

and the chosen travel mode. Mode-specific random coefficients are identified from differences in choice sets

across individuals (e.g., some do not have easy access to public transportation) as well as multiple trips by

the same individual. Additionally, the parametric assumptions on the functional form and distributions also

contribute to the identification.

One common issue encountered in the estimation of travel mode choices pertains to the simultaneous
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relationship between equilibrium mode choices and travel times. If households in a particular neighborhood

share similar preferences for driving, it would result in a high driving share and subsequently low driving speed

due to congestion. To tackle this, Table 3 in the main text incorporates a comprehensive set of controls. These

include mode-by-trip-length bins fixed effects (public transportation may be less reliable for longer trips),

mode-by-trip-attribute fixed effects (trips originating or ending in the city center may face more congestion),

mode-by-year fixed effects (public transportation may improve over time), and mode-by-demographic fixed

effects (older workers and households with multiple commuters may be more likely to drive).

To further investigate the issue of simultaneity, we include the interaction of the driving dummy with fine

spatial controls. These regressors absorb correlated preferences in local areas and can alleviate endogeneity

concerns. Column (1) of Table A2 replicates Column 6 of Table 3 in the main text, our preferred specification

with the most saturated set of regressors. Column (2) adds driving and district fixed effects interactions, and

Column (3) further includes driving and neighborhood fixed effects interactions. Estimating these specifica-

tions, particularly Column (3) with hundreds of additional fixed effects within a nonlinear framework, takes

much longer. However, the resulting estimates closely resemble those of the baseline, and the model’s overall

fit only improves marginally. This suggests that the extensive set of controls included in our baseline model

should adequately address potential endogeneity concerns.

Apart from the conventional concern of endogeneity, there is an additional, more nuanced empirical issue

that we need to address. During the survey years (2010 and 2014), real-time GPS applications were not widely

accessible and individuals were generally unaware of idiosyncratic factors that impacted real-time traffic

conditions when selecting commuting mode. This mitigates the simultaneity concern, consistent with the

findings in Table A2 above. On the other hand, households were likely making decisions based on anticipated

travel times rather than the actual travel times or the travel times we constructed using Baidu/Gaode.

To address measurement errors in travel times, we conducted several robustness checks beyond controlling

for a rich set of trip-related fixed effects. First, we construct alternative travel time variables based on the

average driving speed either at the ring-road-band level or at the ring-road-quadrant level. The average local

speed might better reflect households’ expectations. Results for both the average ring-road speed and the

average ring-road-quadrant speed are similar. We report results based on the average ring-road speed in

Tables A3 below. The parameter estimates and the implied VOT are both comparable to the baseline results

in the main text. For instance, the mean and median VOT are 93% and 82% of the hourly wage, respectively,

which is similar to the mean and median of 96% and 85% reported in Table 3 in the main text.

Second, we re-estimated the mode choice model using the self-reported travel time for each trip (Table

A4).41 The parameter estimates are comparable to those reported in the main text, though the value of time

(at 124% of the hourly wage) is higher than the baseline estimate (at 96% of the hourly wage). This is driven

by the fact that self-reported values tend to underestimate the actual travel times, the so-called recall biases as

shown in Appendix Figure A13, and therefore inflate the implied value of time. Overall, our findings remain

41Travel time for non-chosen modes uses the measures constructed from GIS software.
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robust to measurement errors.

C.3 Estimating Housing Demand

The housing demand model is estimated using a two-step procedure. The notation follows Section 4.2 of the

main text. Nonlinear parameters (denoted by θ1) are estimated via simulated Maximum Likelihood with a

nested contraction mapping in the first step and linear parameters (denoted by θ2) are estimated in the second

step via linear IV/GMM. The log likelihood function is defined as:

lnL (θ1,δ j) = ∑
i

∑
j
I

i
jwilnPi j(θ1,δ j), where

Pi j(θ1,δ j) =
1
Q

Q

∑
q=1

exp[µi jq(θ1)+δ j]

∑k exp[µikq(θ1)+δk]
.

The indicator function I
i
j takes a value of one if household i chooses housing j and wi is the weight

of household i (obtained from the entropy balancing described in Section A.4 to make the mortgage data

representative of home buyers in Beijing). The housing demand choice probability is denoted as Pi j and cal-

culated by averaging over Q = 200 vectors of Halton simulation draws. Nonlinear parameters θ1 characterize

household preference heterogeneity.

We search for θ1 and population average utilities δ j to maximize the log-likelihood function, subject to

the constraint that the model predicted housing demand based on δ j can replicate observed housing demand

(as in Berry et al. 1995):

max
θ1,{δ j} j

lnL (θ1,δ j)

s.t. ∑
i∈C−1( j)

1
Q

Q

∑
q=1

wi
exp[µi jq(θ1)+δ j]

∑k exp[µikq(θ1)+δk]
= w j, ∀ j ∈ J (A2)

The left-hand-side of Equation (A2) is model predicted housing demand for property j. The first summation

∑i∈C−1( j) aggregates simulated choice probabilities over all households whose choice set contains property j.

The second summation averages over Q = 200 vectors of Halton simulations draws to simulate household i’s

probability of choosing property j. The right-hand-side is the observed housing demand for property j (which

is 1 weighted by the entropy weight w j).

We follow the literature and use the following contraction mapping to solve for {δ j}J
j=1 that satisfies

constraint (A2):

δ
d+1
j = δ

d
j + ln(w j)− lnD j(θ1,δ

d
j ),where

D j(θ1,δ
d
j ) = ∑

i∈C−1( j)

1
Q

Q

∑
q=1

wi
exp[µi jq(θ1)+δ d

j ]

∑k exp[µikq(θ1)+δ d
k ]
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where d +1 is the d +1-th iteration, w j is observed property j’s demand, and D j(θ1,δ
d
j ) is model-predicted

demand in iteration d. Our baseline model assumes a closed city – all households choose a place to live in

Beijing – and there is no outside option, hence we normalize the population-average utility of the home with

the lowest unit price to zero (results are the same regardless of which home we use for the normalization).

As the unobserved housing attributes ξ j that are correlated with price and EV terms are absorbed by property

fixed effects δ j, the simulated MLE produces consistent estimates on household specific parameters θ1.

After obtaining θ̂1 and {δ̂ j}J
j=1, we recover the linear parameters θ2 via IV:

δ̂ j(θ2) = α1 p j +x jβ̄ +ξ j

where the IVs are discussed next.

C.4 Endogenous Amenities

We do not model endogenous amenity responses to transportation policies (more restaurants and shops near

subway stations) as we lack suitable measures of amenities. Here we use housing data to examine whether

amenities improved in our sample period as a result of transportation policies. We focus on the effect of

subway expansion, as it creates more local variation than driving restrictions (and there is a larger literature

on the endogenous amenity responses to subway connections) and congestion pricing was under discussion

and not yet implemented during our sample period.

To quantify the effect of subway expansion on amenities, we first use the property-specific mean utility

δ̂ jt that is estimated in the first step of the housing analysis to recover neighborhood-period quality:

δ̂ jt = α1 p jt +x jt β̄ +ψn( j)t +ξ jt ,

where p jt and x jt are property j’s price and attributes, n( j) indexes the neighborhood (i.e., jiedao) of property

j, and ψn( j)t represents time-varying neighborhood quality (which are essentially coefficients of neighborhood-

year fixed effects). Then we regress neighborhood quality on an indicator variable of the subway connection

and two-way fixed effects (TWFE):

ψn( j)t = 1{subway}nt β +λn +Tt + εnt ,

where 1{subway}nt takes the value of one if neighborhood n experienced new subway expansions in time t.

Neighborhoods that never experienced subway expansion serve as a control group, the “never treated” group.

We control for neighborhood λn and year Tt fixed effects and report the estimates in Column (1) of Table

A15 below. Column (2) controls for district-year fixed effects to absorb potential city-wide trends that affect

housing demand.

Given the potential bias from the two-way fixed effects estimator in the staggered difference-in-differences

research designs (Goodman-Bacon, 2021), we also report the CSDID estimator in Columns (3) and (4) of
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Table A15 following the approach proposed by Callaway and Sant’Anna (2021). The TWFE and CSDID

estimates are qualitatively similar. According to Column (4), subway expansion resulted in an 16.9% increase

in neighborhood quality (the average quality of never treated neighborhoods is 2.37). While these estimates

are consistent with the hypothesis that subway expansion is associated with improved local amenities, the

standard errors are large and neither TWFE nor CSDID estimate is statistically significant. This might reflect

the fact that our sample contains few repeated transactions (properties that are transacted both before and after

subway expansion), which could make it difficult to detect changes in neighborhood qualities.

Our counterfactual analysis maintains the property quality measures δ jt at their estimated values through-

out the simulations and does not allow amenities to change in response to transportation policies. If local

amenities improve, as Table A15 provides suggestive supporting evidence, our counterfactual simulations

would underestimate the welfare effects of transportation investments. To address this limitation, we con-

ducted a calibration exercise in Panel B of Table 7 in the main text that incorporates the welfare benefits from

amenity access, in particular consumption access, using estimates from the existing literature (Miyauchi et

al., 2021; Rao, 2021).

C.5 Identification of Housing Demand Parameters and Robustness

Our identification strategy for the housing demand closely follows the IO literature, where a common practice

is to use the attributes of close substitutes as instruments for prices. In our context, this identification strategy

translates to comparing two identical houses situated in close proximity to other houses of varying quality.

In addition, we exploit city-wide shocks induced by exogenous policy changes that make certain areas more

attractive and affect local housing demand.

Specifically, we have constructed three sets of IVs. The first IV is the number of properties that are located

in a separate complex within 3 km of unit j and sold within a two-month window around property j’s sale.42

We exclude properties that lie within the same housing complex as property j since properties in the same

complex might share correlated unobserved attributes. This first IV is arguably exogenous and correlated with

housing price p j because the availability of many properties in close proximity exerts downward pressure on

p j through competition.

The second set of instruments consists of the average physical and location attributes of the same set

of properties, including the average building size, age, the logarithm of distance to the nearest park, and

the logarithm of distance to the nearest key school. The first two sets of IVs are commonly referred to as

“BLP instruments” (Berry et al., 1995). In the housing literature, these IVs are sometimes called “donut

instruments” (Bayer et al., 2007), because the instruments are constructed from properties that are located

between concentric circles around a given house.

Our third set of instruments is the interaction between the second set of IVs and the odds of winning the

license lottery. In 2011, Beijing implemented a mandatory quota system to limit the number of new vehicle

42Alternative cutoffs of 1 km or 5 km deliver similar results.
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licenses. Only households that win the license lottery are permitted to purchase vehicles. The probability

of winning the license lottery experienced a significant decline throughout our sample period, dropping from

9.4% in January 2011 to 0.7% by the end of 2014.

The increased difficulty in acquiring a vehicle has resulted in heightened demand and elevated housing

prices for properties located in desirable areas such as those near the subway or city center. The effect

of Beijing’s license lottery on the housing market has been demonstrated in previous studies (Lyu, 2022).

Similar findings have also been reported for Singapore (Huang et al., 2018).

In essence, the time-varying odds of winning the license lottery can be a valid instrument for housing

prices in the housing demand analysis. It is exogenous because the policy-induced variation is unlikely to be

correlated with the unobserved housing characteristics ξ j. Moreover, it is excluded from the housing demand

equation because its impact on demand for property j is solely through the price p j (any remaining effects

are directly accounted for through the ease-of-commuting variable, EVi j). We interact the winning odds with

the second set of IVs to generate more local variation. As we demonstrate below, the third set of IVs are good

instruments with strong first-stage F-statistics and pass the Hensen’s J-test.

Table A7 below presents the housing demand estimates for all different combinations of IVs, the F-

statistics and the Hensen’s J-statistics (the overidentification test), as well as the average housing demand

price elasticities. The last column that uses all three sets of IVs is the preferred specification that we reported

in Table 5 in the main text. The results are reassuring: the parameter estimates are robust across all columns,

with the same sign, significance, and similar magnitudes for all coefficients. Second, while IV1 and IV2 and

IV1+IV2 have borderline first-stage F-statistics, the other columns all pass the weak-IV test as well as the

overidentification test. These results confirm that our choice of instruments is valid and that the parameter

estimates are robust to the choice of instruments.

The different choices of instruments in Table A7 deliver roughly two sets of estimates for housing demand

elasticity: from -1.61 to -1.79 in Columns (4), (5), and (7) and -2.3 in Columns (3) and (6). The counterfactual

analyses in Table 6 use our preferred choice of IVs in Column (7) and the associated housing demand elasticity

of -1.79. To examine the sensitivity of the counterfactual analysis with respect to the choice of instrument,

we repeat the exercise using the estimates in Column (6) of Table A7 with the associated housing demand

elasticity of -2.3 and report the findings in Table A12. Nearly all results are robust to the choice of instruments,

including travel-mode substitution patterns, speed improvement, sorting patterns, etc. The only exceptions

are changes in consumer surplus, which are around 15% - 30% smaller than Table 6 across different policy

simulations. These patterns are expected, as more elastic demand indicates that households can more easily

substitute across different options and hence the welfare damage of removing some options is moderated.

Choice Set of the Housing Demand Computational and data limitations often require restrictions on the

number of alternatives in demand estimation. While it may be logical to restrict households’ choice set to a

set of affordable or nearby homes, Banzhaf and Smith (2007) shows that this approach may bias estimation

due to unobserved heterogeneity in the choice set definition. Instead of restricting the choice set based on
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attributes, we rely on choice-based sampling methods, which have been proven to deliver consistent estimates

in multinomial logit and mixed logit models by Wasi and Keane (2012) and Guevara and Ben-Akiva (2013).

In particular, Wasi and Keane (2012) performs Monte Carlo simulations and finds a very small bias even

when choice sets are reduced to 10 from a base of 60 alternatives. For Beijing, the average number of

new housing transactions over 2006-2014 was 128,064 (and 118,084 for resales), which would translate into

21,344 properties over a two-month period. A full sample would be far too many for a household to consider.

We take a 1% random sample of the houses sold during a two-month window around the purchase date

of the chosen home. The average size of a choice set is 27 properties. For comparison, in the U.S., buyers

who used the Internet to search for properties visited, on average, ten properties, while those who did not use

the Internet visited four houses in 2017. This pattern is stable over time, suggesting that large consideration

sets for housing are unlikely (NAR, 2017). Practically speaking, we are limited in our ability to increase the

size of the choice set by the number of Baidu/Gaode requests that can be made (we made tens of millions of

queries to construct the 1% sample), as well as the computation challenge of estimating the demand model

with very large choice sets.

To examine the robustness of our results to the choice sampling method, we repeat the analysis with a

0.5% instead of 1% random sample to construct households’ choice sets. The results are shown in Appendix

Tables A13 and A14. The average price elasticity is -1.91 with the 0.5% random sample and -1.79 with the

1% random sample. The parameter estimates and implied willingness to pay for housing attributes are quite

similar across the two samples and hence robust to the size of the choice set. Note that we include district-

month-of-sample fixed effects in the second-stage of the housing demand estimation to account for temporal

market effects.

D The Simulation Algorithm

D.1 Simulation Algorithm

The notation in this section follows that in the main text. Household-trip characteristics w, housing attributes

x, and driving distance are fixed at the observed level. Demand parameters are denoted by: {γ1,γ2,η ,β ,α,φ ,θ ,ξ}.
We fix the random Halton draws throughout the simulation.

We consider three congestion measures: city-wide congestion, ring-road-band congestion, and ring-road-

quadrant congestion. For the last congestion measure, we divide Beijing into 15 ring-road quadrants as shown

in Figure A2. For both ring-road-band congestion and ring-road-quadrant congestion, we use GIS software to

split the commuting trip route into corresponding regions. Accordingly, we break down the driving distance

of each trip to the region-specific driving distance, where a region is either the entire Beijing city, a ring-road

band, or a ring-road-quadrant.

We now describe the algorithm for counterfactual simulations. The goal of each simulation is to find the

equilibrium vector of traffic density and housing prices. The simulation algorithm has both the outer loop and
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the inner loop. The outer loop searches for driving speeds and traffic density that clear the traffic sector, while

the inner loop searches for housing prices that clear the housing market. In counterfactual analyses that shut

down sorting, there is no inner loop.

The algorithm starts with an initial vector of housing price p0 and driving speed v0 (and traffic density

“D0
T,r” for each region). We define disti jr,drive as the total driving distance of the trip from house j to the

household i’s working place that takes place in region r. We use the observed data values as the starting point.

Repeat the following steps until convergence:

1. Based on Dt
T,r in region r and price vector pt for iteration t (D0

T,r and p0 for the first iteration):

(a) Update the driving speed for every household:

vt
r,i j− v0

r,i j

v0
r,i j

= eT,r ∗
Dt

T,r−D0
T,r

D0
T,r

,

where vt
r,i j is updated driving speed for household i’s work commute from home j in region r and eT,r is the

speed-density elasticity for region r (Table A8.)

(b) Use vt
r,i j from step (a) to revise each commuter’s total driving time, which is the sum of the region

specific driving time: timet
i jk,drive = ∑r

disti jkr,drive
vt

i jkr
. Repeat this for the commuting time via taxi: timet

i jk,taxi,

which is also affected by congestion.

(c) Update the ease-of-commuting measure EV for every household member:

EV t
i jk =

1
H

H

∑
h=1

log
(

∑
m

exp
(

θhm + γ1ihtimet
i jk,m + γ2

costi jk,m

hourly wageik
+wi jk,mη

))
where h is a Halton simulation draw for the random coefficient of travel time and the random coefficients of

each travel mode, m stands for travel mode, and θhm and γ1ih are simulated random coefficients for travel time

and mode dummies.

In a similar manner, update member k’s driving probability:

Rt
i jk,driving =

1
H

H

∑
h=1

exp
(

θh,drive + γ1ihtimet
i jk,drive + γ2

costi jk,drive
hourly wageik

+wi jk,driveη

)
∑m exp

(
θhm + γ1ihtimet

i jk,m + γ2
costi jk,m

hourly wageik
+wi jk,mη

) ,

If the counterfactual analysis incorporates sorting, continue with steps (d)-(e). Otherwise skip them and

move to step (f);

(d) Given the updated EV term, search for a new housing price vector pt that clears the housing market

with housing demand equal to housing supply:

∑
i∈C−1( j)

1
Q

Q

∑
q=1

wi

exp
(

αi pt
j +x jβi +∑k φkqEV t

i jk +ξ j

)
∑s∈C(i) exp

(
αi pt

s +xsβi +∑k φkqEV t
isk +ξs

) = S j, ∀ j ∈ J, (A3)
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where the left-hand-side (LHS) is the simulated demand for property j and the right-hand-side is the housing

supply S j (under fixed housing supply, S j is fixed at w j, the weight for property j). The first summation of

the LHS is over households whose choice set includes property j, denoted as C−1 ( j). The second summation

aggregates over Q = 200 Halton draws of random coefficients. Each household has weight wi to make the

sample more representative of home buyers in Beijing. The coefficients φkq are member k’s simulated random

coefficients for the EV term.

As the baseline model is a closed city with no outside options, the market clearing condition pins down

the housing price vector pt up to a constant. We normalize the average housing price (the mean of vector pt)

to be the same as the average price observed in the sample.

For counterfactual analyses that allow neighborhood n’s housing supply to respond to changes in neigh-

borhood average housing prices, we use a constant supply-price elasticity at 0.53 following Wang et al. (2012):

∆St
n% = 0.53∗∆pn.%

Solving equilibrium price vector pt requires iterating the market clearing condition (A3) many times. This

is the inner loop as illustrated below.

(i) Suppose that the price vector is pl in iteration l (l = 1 for the first iteration);

(ii) Update the price vector:

pl+1
j = pl

j +[log(S j)− log(Dl
j(p

l
j))]/k,

where pl+1 is the updated price vector, S j the observed housing supply, Dl
j(pl

j) the model predicted demand

in iteration l (the LHS of Equation (A3)), and k a pre-set constant that controls the step size of each iteration.

(iii) If
∥∥pl+1−pl

∥∥ < ε inner
tol where εtol is a pre-set tolerance level, stop. Otherwise, return to step (ii). In

our simulation, this algorithm always converges. Let pt = pl+1, the fixed point from the inner loop.

(e) At the new equilibrium housing price pt , revise the housing demand choice probability:

Pt
i j =

1
Q

Q

∑
q=1

exp
(

αi pt
j +x jβi +∑k φkqEV t

i jk +ξ j

)
∑s∈C(i) exp

(
αi pt

s +xsβi +∑k φkqEV t
isk +ξs

) .
(f) Update the traffic density in region r using the revised probability to drive and take taxis (and the

revised probability that household i chooses property j in the case of sorting):

D̃T,r = ∑
i

wi ∑
j

Pt
i j

[
∑
k
(Rt

i jk,drive×disti jkr,drive +Rt
i jk,taxi×disti jkr,taxi)

]
,

where the summation inside the large brackets [·] aggregates over commuting member k within each house-

hold. If sorting is shut down, the housing demand choice probability Pt
i j is fixed at initial levels.

2. If
∥∥∥D̃T,r−Dt

T,r

∥∥∥ < εouter
tol where εouter

tol is a pre-set tolerance level, stop. Otherwise, set DT,r
t+1 =
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ϕDt
T,r +(1−ϕ) D̃T,r for some ϕ ∈ (0,1) and return to step 1.

D.2 Assumptions for the Welfare Analysis

We now detail key assumptions underlying the welfare analysis. First, we assume the lifespan of a property

is thirty years, consistent with the empirical evidence in Section 4.2. We also assume that transportation

policies last over a property’s life span. It is important to note that the thirty-year assumption does not affect

estimates of changes in consumer surplus. It only affects the estimation of costs and revenue associated with

implementing transportation policies, which are the total congestion revenue collected, the expenses related

to toll collections, and the costs of operating the subway. All three terms are discounted over thirty years at a

discount rate of 0.98, see more details below.

We acknowledge that the thirty-year assumption, while supported by the empirical evidence in Section 4.2,

may be arbitrary. In order for the congestion pricing policy (with revenue recycling) to be welfare-enhancing,

the policy needs to remain in effect for a minimum of eighteen years. Furthermore, it takes another seven

years for the toll revenue to fully cover the construction cost of the subway expansion (which is Y34,000

per household, see below). Altogether, it takes roughly twenty-five years for the congestion pricing policy to

be welfare-enhancing and for the toll revenue to fully cover the construction cost of the subway expansion.

Subsequently, only a quarter of the annual toll revenue is required to cover the annual operating expenses of

the subway.

Second, to be conservative, we only include commuting trips (which account for 60% of all trips and

75% of total travel distance in 2014) and ignore non-commuting trips in calculating the benefits of subway

expansion. Lastly, we abstract away from distortionary taxes and assume instead that subways’ construction

costs are financed via a non-distortionary uniform head tax. Similarly, when congestion toll revenues are

recycled, they are distributed evenly across households in a lump sum manner.

To facilitate comparison, we calibrate the congestion charge at Y1.13/km to achieve the same level of

congestion reduction as under driving restriction with the 2008 subway network. We include (lifetime) subway

and bus fares as part of the government revenue in the counterfactual analyses, but they account for a negligible

fraction of the total welfare. For example, the subway fare is Y2 per ride. Total lifetime subway fares paid

by a household is roughly Y2,400 (Y2 per ride * 8% likelihood to take subway * 500 rides/year * 30 years),

orders of magnitude smaller than the net welfare per household as reported in the main text.

D.3 Costs of Implementing Congestion Pricing and Expanding the Subway

We account for both the capital and operating costs of the congestion pricing system based on the system in

Singapore. Singapore’s electronic road pricing scheme launched in 1998 costed $110 million to set up with an

annual operating cost of $18.5 million.43 Singapore is upgrading the system to be satellite-based and the setup

43https://www.zdnet.com/article/singapore-readies-satellite-road-toll-system-for-2021-rollout/ and
https://nyc.streetsblog.org/wp-content/uploads/2018/01/TSTC_A_Way_Forward_CPreport_1.4.18_medium.pdf.
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cost would be about $370 million but the operating cost is expected to be lower than the current system. We

assume that the congestion pricing system in Beijing would be satellite-based and we scale both the setup and

operating costs up by the population of Beijing relative to that of Singapore. To facilitate policy comparison,

we calculate the total cost per household (assuming 7.2 million households in Beijing) that include both the

initial setup cost and the 30-year discounted annual operating cost at a discount rate of 0.98. This amounts to

Y3000, about 2.5% of the total toll revenue per household during the same period.

The subway costs include the construction and operating costs of the new subway lines built between

2008 and 2014. The subway construction cost is Y245.23 billion (Li et al., 2019), implying about Y34,000

per household. The annual operating cost is estimated to be Y1246 per household, which translates to a

30-year discounted total operating cost of Y69,000 per household (at a discount rate of 0.98). Together, the

construction and discounted total operating cost amount to Y103,000 per household.

D.4 Calculation of Pollution Externalities

Air pollution is an important motivating factor in policy decisions and a relevant consideration for the imple-

mentation of anti-congestion policies. Here we discuss how to calculate the welfare benefits of reduced air

pollution. Specifically, the expected air pollution damage caused by household i in counterfactual simulations

can be measured by:

Bi = ∑
j

Pr(Household i buys property j)×Bi j,

Bi j =
K

∑
k=1

EFi jk×V KTi j×MDk, (A4)

where Bi j is the pollution damage if household i resides in property j. It consists of three terms: EFi jk is the

emissions factor that converts the kilometers driven by household i into grams of pollutant k, V KTi j denotes

the commuting distance, and MDk indicates the marginal damage per gram of pollutant k. We explain how

each of these three terms is constructed below.

The emissions factor EFi jk, which represents the amount of pollutant emitted per kilometer of driving, is

calculated by multiplying a baseline emissions factor BEFk by a speed adjustment factor γi j:

EFi jk = BEFk× γi j,

The speed adjustment factor accounts for the impact of different driving speeds on emissions, with lower

speeds generating greater emissions, all else being equal. The baseline emissions factors and speed adjustment

factors are derived from the China National Motor Vehicle Pollutant Emission Standards implemented by the

Beijing government in 2013, as specified in MEP (2015).
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The baseline emissions factors per kilometer of driving distance are as follows:

BEF =

(
CO2 NOx PM2.5

248g/km 0.017g/km 0.003g/km

)
.

The speed adjustment factors γi j depend on the households’ driving speeds vi j and are defined as follows:

γi j =



1.69 if vi j < 10km/h

1.69− vi j−10
25−10 × (1.69−1.26) if vi j ∈ [10km/h,25km/h)

1.26− vi j−25
30−25 × (1.26−0.79) if vi j ∈ [25km/h,35km/h)

0.79− vi j−30
60−30 × (0.79−0.36) if vi j ∈ [35km/h,60km/h)

0.36 if vi j ≥ 60km/h.

The second term in Equation (A4), V KTi j, represents the total driving distance in kilometers for household

i residing in property j. The expected daily kilometers traveled by households is calculated as the commuting

distance weighted by the driving probability. To estimate the expected lifelong driving distance for household

i residing in property j, we multiply the daily commuting distance by 2 trips per day, 250 working days per

year, and the assumed housing tenure of 30 years:

V KTi j = 2×250×30×Pr(Drivingi j)×Distancei j,

where Pr(Drivingi j) represents the probability that household i living in property j drives to work, and

Distancei j denotes the commuting distance.

The third term in Equation (A4), MDk, represents the marginal damage in dollars ($) per gram of pollutant

and is assumed as follows:

MD =

(
CO2 NOx PM2.5

$41/ton $94,000/ton $503,724/ton

)
.

The marginal damage for CO2 (also known as the social cost of carbon) is of a global nature and is taken

from EPA (2016) at $41 per ton in 2014 dollars. The marginal damages for NOx and PM2.5 are specific to

China and are obtained from Zhou (2022). These estimates are derived using an intake fractions approach, as

reported in (Humbert et al., 2011; Apte et al., 2012). This approach incorporates local population density and

estimates the amount of emitted pollution that is inhaled by the local population. Multiplying the estimated

intake value with the concentration-mortality response relationship and the value of statistical life (VSL)

delivers marginal damage estimates.

In the counterfactual analyses, we begin by calculating changes in the marginal damage resulting from

each household’s reduced driving and then aggregate these values over households to obtain total welfare

estimates. Dividing the aggregate benefits by the number of Beijing households delivers the welfare benefits
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per household. Note that the social damage caused by CO2 emissions is global in nature and affects regions

and countries beyond Beijing’s borders. Our calculation includes all environmental benefits associated with

CO2 reduction, which represents an upper bound of the benefits accruing to Beijing residents (as some of the

benefits from CO2 reduction extend to regions outside Beijing).

The reduction in emissions and its environmental benefit arise from two main factors. First, commuters

drive less frequently, and under congestion pricing, they experience shorter commutes, leading to a decrease

in vehicle kilometers traveled (V KTi j). Second, the presence of fewer vehicles on the road reduces traffic

density, resulting in improved driving speeds, better fuel efficiency, and better speed adjustment factors.

Among the different policy scenarios, the combined policy of congestion pricing and subway expansion

yields the largest reduction in emissions, amounting to 6% of the aggregate welfare effects. These findings

indicate that the benefits of emissions reduction are significant but remain orders of magnitude smaller than

the baseline welfare estimates. As a result, pollution benefits do not change the qualitative findings of the

paper.

E Robustness Checks

This section discusses in detail the five robustness checks presented in Panel B of Table 7. They are from

policy simulations based on alternative modeling assumptions.

E.1 Housing Supply Adjustment

Our baseline results in Sections 6.1 to 6.3 assume a fixed housing supply. The first row of Panel B in Table

7 summarizes the speed and welfare changes when the housing supply responds to changes in neighborhood

average housing prices and adjusts at a price elasticity of 0.53 as in Wang et al. (2012).44 Appendix Table

A16 reports the full set of results.

In the absence of migration and assuming every household occupies a house, the total number of houses

supplied is equal to the total number of households in Beijing, which is a constant. When a transportation

policy increases demand for a particular neighborhood, demand for undesirable neighborhoods falls since

the total number of households is fixed. This results in price increases in desirable neighborhoods and price

reductions in undesirable areas. Changes in housing prices induce changes in local supply. Overall, the

aggregate housing supply and the average price at the city level remain unchanged.

To understand how housing supply adjustments affect our previous findings, consider a neighborhood

where average home prices appreciate after a policy change. This price appreciation increases neighborhood

housing supply, which mitigates the overall price effect. In addition, the availability of additional housing

in desirable locations enhances sorting by allowing more households to move in. In other words, allowing

44The analysis is based on data for 35 Chinese cities from 1998 to 2009. Baum-Snow and Han (2021) estimate a supply elasticity
of 0.3-0.5 for US cities based on data from 2000 to 2010, which is smaller than the estimates from Saiz (2010) based on data from
1970-2000.
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flexibility in housing supply magnifies the role of sorting. For example, under congestion pricing, the housing

price appreciates the most around employment centers. The large housing supply response in these areas

allows more people to live closer to work, further alleviating congestion. Indeed, the reduction in the com-

muting distance is amplified from 0.17 km to 0.35 km for high-income households and from 0.06 km to 0.24

km for low-income households with housing supply adjustment. The driving speed improvement increases

from 3.83 km/h to 4.02 km/h.

In contrast, subway expansion leads to housing price appreciation and new housing supply in city suburbs,

which causes people to live farther away from work. By allowing for housing supply responses, the increase

in commuting distance expansion goes from 0.36 km to 0.86 km for high-income households and from 0.18

km to 0.72 km for low-income households. This attenuates the speed improvement under subway expansion

from 1.49 km/h to 0.95 km/h.

While our analysis does not incorporate the supply changes at the aggregate level, the findings in the

robustness check with localized supply responses suggest allowing the aggregate housing supply to respond

would further amplify the sorting effect of the policies and re-enforce the impacts observed without localized

supply responses.

E.2 More Granular Congestion

The baseline analysis assumes that the geographic scope of congestion is city-wide and adjusts travel speeds

with a city-wide traffic density. The second row of Panel B in Table 7 allows congestion to vary across ring-

road-quadrants and adjusts local speeds with the congestion measure in the corresponding regions (Appendix

Table A17 reports the full set of results). Appendix Table A18 illustrates changes in travel speeds across

these fifteen regions, with the biggest effect in the outer part of southwestern Beijing, which had no subway

coverage prior to 2014 and was subsequently connected. Overall, the policies have larger effects within the

fifth ring road, as traffic is closer to road capacity in these regions. Despite these regional differences, both the

average speed improvement and welfare effects are very similar to those in the baseline. Additional results

using ring-road-band congestion measures are also similar. Overall, our analysis indicates that incorporating

spatially varying speed effects at a more granular level does not alter the key findings. This perhaps is not

surprising given that most of Beijing’s urban core is severely congested during rush hour.

E.3 Exclusion of Random Coefficients

The sorting model with a rich set of demographic variables and random coefficients predicts intuitive substi-

tution patterns as shown in Table 6. For example, under driving restrictions and congestion pricing, people

who drive are more like to switch to the subway and taxis. Similarly, driving, taxi, and bus trips are affected

disproportionately more under the subway expansion. According to our preferred estimate, the subway ex-

pansion from 2008 to 2014 that doubled the length of the subway network boosted the percentage of people

who commute via subway from 9.9% to 15.2%, an increase of more than fifty percent.
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To evaluate the importance of incorporating heterogeneous preferences, we re-estimate the housing de-

mand and travel mode choices excluding random coefficients. We include observed heterogeneity from vari-

ables such as income, age, gender, and education since models with neither demographic controls nor random

coefficients cannot fit the data. The third row of Panel B in Table 7 summarizes the welfare results.

While the model without random coefficients can fit the observed travel mode shares and replicate the

average housing demand elasticity as in our baseline, its predictions on substitution patterns are often counter-

intuitive as shown in Appendix Table A19. Since one of the main goals of the policies studied here is to

induce travel mode changes, predicting these adjustments accurately is of first-order importance for this study.

For example, subway expansion increases ridership only by a modest 11% among high-income households

instead of 51% as predicted by the baseline model. This is because the subway’s market share was less than

10% in 2008 and multinomial logit-type models tend to predict “proportionate” changes (and hence a modest

increase) in market share. Consequently, the model without random coefficients predicts a negligible speed

improvement of 0.16 km/h, which is only 11% of the baseline number and generates a wrong sign for the

welfare effects of subway expansion.

Appendix Table A20 compares the sorting responses with and without random coefficients. Models with-

out random coefficients exaggerate welfare losses under congestion pricing in terms of travel mode adjust-

ments, which leads to stronger incentives for households to move closer to work to mitigate the negative

impacts of congestion tolls. As a result, the associated sorting responses are much stronger in models without

random coefficients than those in models with random coefficients. Similarly, as models without random co-

efficients underestimate gains from riding the subway, the sorting response from subway expansion is muted

in models without random coefficients relative to models with random coefficients.

The IO literature has shown that models without random coefficients tend to exaggerate the welfare impli-

cations of policy changes. As shown by simulation exercises in Petrin (2002), logit errors in models without

random coefficients play a bigger role in explaining differences in choices by observably similar households.

These logit errors enter into the welfare calculation and constitute part of welfare gain/losses. The role of

logit errors is much reduced in models with random coefficients, which predict more reasonable welfare ef-

fects. Our results confirm this conventional wisdom. Appendix Table A21 and Appendix Figure A16 reports

changes in consumer surplus resulting from transportation policies. In models without random coefficients,

reduced driving either under driving restrictions or congestion pricing (without recycling toll revenue) would

lead to huge losses for consumers at about 5-10 times the magnitude predicted by models with random coef-

ficients.

E.4 Migration

The baseline analysis assumes a fixed population. To account for migration, we assume in-migration of 5%

under subway expansion and out-migration of 5% under driving restrictions and congestion pricing in the

fourth row of Panel B in Appendix Table 7. These choices are somewhat arbitrary but serve as upper-bound
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estimates of policy-induced migration since Beijing’s population grew by 14% during the sample period.

The speed improvement and the associated welfare under the driving restriction and congestion pricing are

strengthened with out-migration, while the opposite is true for subway expansion with in-migration. Impor-

tantly, the qualitative findings remain the same as the baseline results in Table 6.

E.5 Consumption Access

Recent literature points out that improved transportation infrastructure benefits consumers in terms of easier

access to amenities. According to (Miyauchi et al., 2021; Rao, 2021), the benefit of consumption access is

about a third of the welfare benefits of job access in Tokyo and Beijing, respectively. We multiply the baseline

consumer surplus by 1.33 and report the welfare changes in the fifth row of Panel B in Appendix Table 7.

This does not affect the baseline qualitative findings.
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F Figures and Tables

Figure A1: Subway Network Expansion in Beijing

(a) 09/28/1999 (b) 07/19/2008

(c) 12/28/2014 (d) 12/28/2019

Note: The subway system in Beijing expanded from 2 lines to 22 lines from 1999 to 2019. From 2007 to 2018, 16 new subway

lines were built with a combined length of over 500km. By the end of 2019, the Beijing Subway was the world’s longest and busiest

subway system with a total length of nearly 700km and daily ridership of over 10 million.
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Figure A2: Traffic Analysis Zones and Ring-Road-Quadrant Regions
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Note: This map illustrates the fifteen localized congestion regions that we create by aggregating TAZs based on their location within

each ring road and quadrant (NW, SW, NE, SE). For each of the three areas encircled by the 3rd to the 6th ring road, we divide them

into four regions. We also create one region for TAZs between the 2nd and 3rd ring roads, one region for TAZs within the 2nd ring

road, and one region for TAZs outside the 6th ring road.
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Figure A3: Implied Value of Time Distribution from the Mode Choice Estimation

Note: The figure plots the estimated distribution of value of time (VOT) in terms of hourly wage that is based on Column (6) of

Table 3. VOT is measured by the ratio of the preference for travel time over the preference for monetary travel cost. The preference

for travel time has a winsorized (at the 5th and 95th percentiles) chi-square distribution with three degrees of freedom, while the

preference for monetary travel cost is inversely related to income. The red line shows the average VOT (95.6% of the hourly wage).

The median VOT is 84.6% of the hourly wage.

Figure A4: Distance to Work by Gender in km

Note: the figure displays the average distance to work by year based on the mortgage data for male (green bars) and female (red bars)

household members, separately. The whiskers denote 95% intervals. Males have longer commutes than females. The increasing

commuting distance over time reflects the expansion of Beijing and its transportation infrastructure.
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Figure A5: Changes in Income from Counterfactual Simulations (in Y)

(a) Driving Restriction (b) Congestion Pricing

(c) Subway Expansion (d) Subway Expansion + Congestion Pricing

Note: This figure illustrates simulated changes in household annual income (in Y) across TAZs under different counterfactual

policies (relative to the no policy scenario). The results are based on the simulations in Table 6 that allow for household sorting, fix

housing supply, use estimates including random coefficients, and use a single city-wide congestion index. Warmer colors correspond

to increases in income while colder colors represent decreases. Green lines represent new subway lines built between year 2008 and

2014.
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Figure A6: Changes in Housing Prices from Counterfactual Simulations (Y/m2)

(a) Driving Restriction (b) Congestion Pricing

(c) Subway Expansion (d) Subway Expansion + Congestion Pricing

Note: This figure illustrates simulated changes in housing prices (in Y/m2) across TAZs under different counterfactual policies

(relative to the no policy scenario). The results are based on the simulations in Table 6 that allow for household sorting, fix housing

supply, use estimates including random coefficients, and use a single city-wide congestion index. Warmer colors correspond to

increases in commuting distance while colder colors represent decreases. Green lines represent new subway lines built between year

2008 and 2014.
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Figure A7: Price Gradient under the 2008 and 2014 Subway Network

Note: This plot shows the simulated bid-rent curve with respect to subway distance under the 2008 and 2014 network, respectively.

The results corresponds to Columns (1) and (4) of Table 6. The gradient of the bid-rent curve under the 2014 subway system

(-Y1900/m2 per km) is steeper than the 2008 subway system (-Y700/m2 per km), reflecting households’ higher WTP for proximity

to subway stations when the subway system is more desirable. The bid-rent shifts down under the 2014 subway system that reaches

to cheaper homes farther away from the city center.

Figure A8: Speed Adjustment Decomposition for Different Transportation Policies

Note: This figure decomposes speed changes along four adjustment margins. For each policy, the bars display the cumulative speed

changes incorporating previous margins. The partial speed effect allows the driving speeds to adjust one time via Equation (13), but

does not impose the transportation sector’s clearing condition. The second bar additionally incorporates the full equilibrium speed

effect and additional changes in speed when traffic speeds adjust further to clear the transportation sector. The third bar includes

household sorting. The last bar allows housing supply to adjust at the neighborhood level in addition to the three channels above.
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Figure A9: Job Density

High-Tech Center

Financial Center

Far from work

Note: This figure plots work density by TAZ based on work locations from the mortgage data. Darker colors/taller shapes indicate

greater work density.

Figure A10: Housing, Amenities, and Transportation Network

5th Ring Road

Note: The figure shows home locations in the mortgage data overlaid with ring roads (black lines), subway lines in blue (as of 2015),
government-designated key schools (red stars), and government-designated parks (green area). The outermost black line traces out
the 6th ring road.
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Figure A11: Construction of the Travel Choice Set
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Note: Travel time and distance using walk, bike, car, and taxi are constructed using the Baidu Maps API based on the survey reported

departure time and day of the week. Bus travel time and distance are constructed using Gaode Maps API because it provides the

number of transfers and walking time between bus stops. The travel time for bus, car, and taxi are adjusted based on the historical

traffic congestion condition in the survey month-year. For subway trips, the walking time and distance to and from subway stations

are provided by Baidu Maps API. Subway transit distance and time from the origin subway station to the destination station are

calculated using GIS based on the historical subway network and subway timetables in 2010 and 2014.

Figure A12: an Example of Travel Routes

Note: The figure shows travel time and cost for a particular trip that started at 7:09am on 9/12/2010 for each mode. The chosen

mode was subway. The left panel shows the the straight-line direction of travel, while the right panel shows the time, monetary

cost, and distance for each travel mode and the corresponding route constructed by Baidu API, Gaode API and GIS.
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Figure A13: Recall Bias
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Note: This figure shows the relationship between travel time and travel distance. The solid green line is self-reported subway travel

time in the Beijing Household Travel Survey (BHTS). The dashed line is the travel time obtained via Baidu Map API (Baidu). The

differences reflect the recall bias. We use calculated travel time from Baidu in most of our analyses and only use self-reported travel

time as a robustness analysis.

Figure A14: Propensity to Purchase Houses in Neighborhoods with New Subway Stations

Note: This figure uses mortgage data to illustrate changes in the fraction of property transactions that are accounted for by neighbor-

hoods that gained new subway stations after the subway expansion. The number of observations is 1,395 neighborhood years (9 years

with 155 neighborhoods). There were five major waves of subway expansions affecting 90 out of 155 neighborhoods in Beijing from

2008 to 2014. We fail to reject the null hypotheses of no significant pre-trend (p-value= 0.71).
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Figure A15: Job Change and Housing Purchase

(a) Raw Data - Job Change (b) Raw Data - Mortgage Application

(c) Job Change around Mortgage Application (d) Mortgage Application around Job Change

Note: Panel (a) shows the raw trend of the job change frequency before and after home purchase (denoted as month zero). The
shadow area represents the 95 percent confidence interval. The red horizontal line refers to the monthly average probability of job
change during the sample period. Panel (b) shows the raw trend of home purchases with month zero denoting a job change. Panels
(c) and (d) are event studies with year-month and employee fixed effects, where the 13-18 months before the event is taken as the
baseline period. Standard errors are clustered by employee. The bars represent the 95 percent confidence intervals.
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Figure A16: Distribution of Welfare Changes with and without Random Coefficients

(a) Driving Restriction (b) Congestion Pricing at Y1.13/km

(c) Subway Expansion

Note: This figure plots the distribution of welfare changes per household under different policies in a model with random coefficients

(our preferred specification) and a similar model without random coefficients. Bars denote the fraction of observations in each bin and

vertical dashed lines denote average welfare changes per household. Welfare is consumer surplus plus toll revenue and environmental

benefits minus subway costs. Consumer surplus estimates are recovered from housing transaction prices and should be interpreted as

total consumer surplus over a property’s life span. Toll revenues and subway costs are the discounted sum over thirty years (which is

approximately the lifespan of a property).
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Table A1: Index of Mathematical Notation in the Sequence of Appearance in the Text

Symbol Description
Indices

i Household
k Household member (e.g., borrower/co-borrower)
j House
t Year
` Elements of housing attributes
m Commuting travel mode
n Neighborhoods (Jiedao) in Beijing
r Regions of Beijing
s Road segments

Variables
U Utility from housing demand
x Housing attributes
p Housing price
EV Ease-of-commute measure
ξ Unobserved housing attributes
y Household income
ζi Idiosyncratic preference for ease-of-commute
P Housing choice probability
u Utility from commuting
time Commuting time
v Commuting speed
cost Commuting cost
w Commuting mode-commuter attributes
R Commuting mode choice probability
D Housing demand
S Housing supply
DT Driving demand
ST Traffic density that can be sustained at a certain speed under the existing road capacity
dist Commuting distance
x Variables affecting speed-density relationship
W Households’ welfare measure in Y

Parameters on
α Housing price
β Housing attributes
φ Ease-of-commute
θim Commuting mode-specific random coefficient
γ Time & cost of commuting
η Commuting mode-commuter attributes
e Price elasticity of housing supply
eT The elasticity of traffic density that can be sustained under existing road capacity w.r.t speed
eT Speed-density elasticity
βT Speed-density estimation covariates
µ Household-specific utility from housing demand
δ Housing demand mean utility
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Table A2: Travel Mode Choices Estimation with Fine Spatial Controls

(1) (2) (3)
(1)+ (1)+

Baseline Drive*District FE Drive*Neighborhood FE

Travel Cost/Hourly Wage (γ2) -2.531 -2.552 -2.508
(0.065) (0.065) (0.067)

Random coefficients on travel time (µγ )
Travel Time -0.931 -0.930 -0.904

(0.012) (0.012) (0.012)
Random coefficients on mode-specific constants (σm)
Driving 3.391 3.358 3.377

(0.054) (0.054) (0.054)
Subway 4.470 4.535 4.308

(0.142) (0.144) (0.139)
Bus 3.851 3.853 3.774

(0.056) (0.056) (0.056)
Bike 3.887 3.881 3.849

(0.054) (0.054) (0.054)
Taxi 4.203 4.212 3.081

(0.353) (0.353) (0.279)
Mode*Year FE Yes Yes Yes
Mode*Trip related FE Yes Yes Yes
Mode*Demographic FE Yes Yes Yes
Drive*District FE Yes
Drive*Neighborhood FE Yes
Log-likelihood -77706 -77609 -76938

Implied mean VOT 0.956 0.947 0.937
Implied median VOT 0.846 0.838 0.829

Note: The number of observations is 73,154. Column (1) replicates Column (6) of Table 3. Column (2) adds interactions of driving
and district fixed effects. Column (3) further includes the interactions of driving dummy and neighborhood fixed effects. The other
controls are the same as in Table 3. Robust standard errors based on the sandwich formula are reported in parentheses.
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Table A3: Travel Mode Choices Estimation with Average Driving Speed

Logit Random Coefficient

(1) (2) (3) (4) (5) (6)

Travel Time (γ1) -1.194 -0.270 -0.191
(0.082) (0.006) (0.006)

Travel Cost/Hourly Wage (γ2) -1.578 -0.788 -0.565 -1.411 -1.424 -2.531
(0.324) (0.028) (0.034) (0.041) (0.052) (0.065)

Random coefficients on travel time (µγ )
Travel Time -0.955 -0.885 -0.931

(0.008) (0.008) (0.012)
Random coefficients on mode-specific constants (σm)
Driving 3.424 3.412

(0.051) (0.054)
Subway 4.381

(0.142)
Bus 3.889

(0.056)
Bike 3.869

(0.055)
Taxi 4.829

(0.401)

Mode*Year FE Yes Yes Yes Yes Yes Yes
Mode*Trip related FE Yes Yes Yes Yes Yes
Mode*Demographic FE Yes Yes Yes Yes
Log-likelihood -116318 -109944 -91131 -87592 -85275 -77832

Implied mean VOT 1.203 0.337 0.333 1.781 1.600 0.932
Implied median VOT 1.203 0.337 0.333 1.576 1.415 0.824

Note: The model estimates use the average driving speed in each ring road to construct the travel time measure. The number
of observations is 73,154. The specifications follow those in Table 3 and include an increasingly rich set of fixed effects
interacting with travel model dummies. Trip related FEs include trip distance bins (e.g., whether the distance is shorter than
2km or between 2-5 km), origin ring road dummies (e.g., whether the trip origin is within the 4th ring road), and destination
ring road dummies. Demographics FEs include a respondent’s age, age squared, gender, education, car ownership, and whether
the household has more than one commuter. The first three specifications are multinomial logit while the last three add random
coefficients. Robust standard errors based on the sandwich formula are reported in parentheses.
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Table A4: Travel Mode Choices Estimation with Reported Travel Time

Logit Random Coefficient

(1) (2) (3) (4) (5) (6)

Travel Time (γ1) -0.513 -0.262 -0.186
(0.005) (0.006) 0.007

Travel Cost/Hourly Wage (γ2) -0.426 -0.778 -0.558 -1.343 -1.383 -2.432
(0.023) (0.027) 0.034 (0.040) (0.049) (0.064)

Random coefficients on travel time (µγ )
Travel Time -0.920 -0.851 -0.872

(0.008) (0.008) (0.012)
Random coefficients on mode-specific constants (σm)
Driving 4.182 4.471

(0.059) (0.059)
Subway 2.899

(0.117)
Bus 3.514

(0.055)
Bike 3.697

(0.056)
Taxi 11.786

(1.158)

Mode*Year FE Yes Yes Yes Yes Yes Yes
Mode*Trip related FE Yes Yes Yes Yes Yes
Mode*Demographic FE Yes Yes Yes Yes
Log-likelihood -109249 -103742 -85147 -84852 -80851 -74327

Implied mean VOT 1.307 0.888 1.017 1.528 1.836 1.239
Implied median VOT 1.307 0.888 1.017 1.352 1.624 1.096

Note: The model estimates use the reported travel time from the BHTS travel survey data for the chosen mode and GIS-
constructed travel time for non-chosen modes as the travel time measure. The number of observations is 73,154. The spec-
ifications follow those in Table 3 and include an increasingly rich set of fixed effects interacting with travel model dummies.
Trip related FEs include trip distance bins (e.g., whether the distance is shorter than 2km or between 2-5 km), origin ring
road dummies (e.g., whether the trip origin is within the 4th ring road), and destination ring road dummies. Demographics
FE includes a respondent’s age, age squared, gender, education, car ownership, and whether the household has more than one
commuter. The first three specifications are multinomial logit while the last three add random coefficients. Robust standard
errors based on the sandwich formula are reported in parentheses.
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Table A5: Housing Demand Without EV Terms - Linear Parameters

Variables OLS OLS IV1 IV2 IV2+IV3 All IVs
(1) (2) (3) (4) (5) (6)

Price (Ymill.) -2.073 -2.062 -7.101 -4.224 -5.031 -5.356
(0.180) (0.176) (1.646) (0.535) (0.432) (0.418)

Ln(home size) -3.590 -3.657 5.102 0.104 1.512 2.079
(0.248) (0.251) (2.937) (0.932) (0.761) (0.765)

Building age -0.032 -0.026 -0.144 -0.076 -0.095 -0.103
(0.006) (0.006) (0.040) (0.012) (0.010) (0.010)

Floor area ratio 0.017 0.001 -0.009 -0.007 -0.009 -0.009
(0.031) (0.023) (0.036) (0.021) (0.025) (0.027)

Ln(dist. to park) 0.167 0.052 -0.513 -0.196 -0.285 -0.321
(0.059) (0.054) (0.225) (0.073) (0.075) (0.081)

Ln(dist. to key school) 0.631 0.555 -0.034 0.312 0.223 0.187
(0.060) (0.091) (0.213) (0.086) (0.089) (0.091)

Year-Month-District FE Y Y Y Y Y Y
Neighborhood FE Y Y Y Y Y

First-stage Kleinberg-Paap F 9.9 10.5 14.2 14.2
Avg. Housing Demand Price elasticity 3.09 3.10 -1.94 0.94 0.13 -0.19

Note: This table is similar to Table 5 except the dependent variable is the recovered population-average utility {δ jt} jt when EV is
excluded from housing attributes. The number of observations is 79,894. The first two columns and the last four present OLS and IV
estimates, respectively. The floor area ratio is total floor area over the complex’s parcel size and measures complex density. Distance
to key school is the distance to the nearest key elementary school. IV1 is the number of homes that are within 3km from a given home,
outside the same complex, and sold in a two-month window. IV2 is the average attributes of these homes (building size, age, log
distance to park, and log distance to key school). IV3 is the interaction between IV2 and the winning odds of the license lottery. The
winning odds decreased from 9.4% in January 2011 to 0.7% by the end of 2014. Standard errors are clustered at the neighborhood
level.

A-40



Table A6: Alternative Specification for First-Stage Housing Demand Model with More Covariates

(1) (2) (3) (4)
Main Table Demo interactions (2)+EV interactions (3)+Edu interactions

Para S.E. Para S.E. Para S.E. Para S.E.

Demographic Interactions
Price (in 1 million RMB)*ln(income) 1.030 0.016 0.753 0.021 0.759 0.022 0.697 0.022
Ln(distance to key school)*age in 30-45 -0.420 0.010 -0.341 0.012 -0.358 0.014 -0.370 0.014
Ln(distance to key school)*age > 45 -0.123 0.021 0.026 0.024 -0.045 0.028 -0.097 0.028
Ln(home size)*age in 30-45 1.486 0.029 1.119 0.041 1.111 0.042 1.114 0.042
Ln(home size)*age > 45 2.746 0.061 1.927 0.087 1.873 0.087 1.880 0.088
Price (in 1 million RMB)*age in 30-45 0.276 0.023 0.281 0.023 0.317 0.023
Price (in 1 million RMB)*age > 45 0.600 0.045 0.611 0.044 0.758 0.046
Ln(distance to key school)*ln(income) -0.280 0.011 -0.203 0.013 -0.183 0.013
Ln(home size)*ln(income) 0.573 0.040 0.603 0.040 0.600 0.041
Price (in 1 million RMB)*college 0.526 0.030
Ln(home size)*college 0.006 0.052
Ln(distance to key school)*college -0.177 0.017
EV and interactions
EVMale 0.755 0.006 0.755 0.040 0.407 0.046 0.424 0.047
EVFemale 0.893 0.006 0.890 0.084 0.506 0.047 0.481 0.049
EVMale*ln(income) 0.072 0.010 0.052 0.010
EVFemale*ln(income) 0.086 0.010 0.072 0.010
EVMale* Age in 30-45 0.002 0.010 0.009 0.011
EVMale* Age > 45 0.032 0.011 0.065 0.020
EVFemale* Age in 30-45 -0.038 0.020 -0.032 0.011
EVFemale* Age > 45 -0.206 0.011 -0.180 0.022
EVMale* College 0.091 0.013
EVFemale* College 0.107 0.013
Random Coefficients
σ (EVMale) 0.379 0.013 0.371 0.033 0.359 0.013 0.346 0.014
σ (EVFemale) 0.482 0.012 0.475 0.017 0.465 0.012 0.450 0.012
Log-likelihood -168807.8 -168375 -168259 -167554

Avg. Price Elasticity -1.79 -1.74 -1.75 -1.75

Note: The table reports MLE estimates of the non-linear parameters in the housing demand model with an increasing number of
covariates, using mortgage data from 2006-2014 with 77,696 observations. Column (1) reproduces our preferred specification of
Column (3) in Table 4. Column (2) interacts all property attributes with age and income. Column (3) adds interactions between EVs
and age and income. Column (4) further includes interactions between the college dummy and all property/EV attributes.

A-41



Table A7: Housing Demand Linear Parameters with Different Instruments

(1) (2) (3) (4) (5) (6) (7)
IV1 IV2 IV3 IV1+IV2 IV2+IV3 IV1+IV3 All IVs

Price (Ymill.) -7.091*** -6.283*** -7.023*** -6.562*** -6.454*** -7.023*** -6.596***
(1.640) (0.867) (0.570) (0.722) (0.583) (0.570) (0.534)

Ln(home size) 4.721 3.331** 4.623*** 3.818*** 3.631*** 4.623*** 3.879***
(2.927) (1.505) (1.071) (1.289) (1.022) (1.071) (0.969)

Building age -0.144*** -0.125*** -0.142*** -0.132*** -0.129*** -0.142*** -0.132***
(0.040) (0.020) (0.015) (0.017) (0.014) (0.015) (0.013)

Floor area ratio -0.019 -0.023 -0.024 -0.023 -0.023 -0.024 -0.023
(0.036) (0.032) (0.036) (0.033) (0.033) (0.036) (0.034)

Ln(dist. to park) -0.475** -0.389*** -0.471*** -0.420*** -0.408*** -0.471*** -0.424***
(0.222) (0.117) (0.117) (0.115) (0.101) (0.117) (0.103)

Ln(dist. to key school) 0.210 0.323** 0.241* 0.292** 0.304** 0.241* 0.288**
(0.213) (0.139) (0.124) (0.129) (0.121) (0.124) (0.118)

Year-Month-District FE Y Y Y Y Y Y Y
Neighborhood FE Y Y Y Y Y Y Y
Kleibergen-Paap rk Wald
F statistic 9.88 10.48 23.03 11.28 14.22 23.03 14.22
P-value for Hansen’s J-test . 0.03 0.97 0.08 0.10 0.97 0.19

Avg. Price Elasticity -2.42 -1.40 -2.34 -1.75 -1.61 -2.34 -1.79

Note: The number of observations is 77,696. The dependent variable is the population-average utility δ jt recovered using parameter
estimates in Column (3) of Table 4. IV1 is the number of properties that are within 3km from property j, excluding the chosen
complex, and sold in a two-month window around property j’s sale. IV2 constitute the average attributes of these homes (building
size, age, log distance to park, and log distance to key school). IV1 and IV2 are often called the “BLP” IVs following (Berry et al.,
1995). IV3 are the interactions between IV2 and the winning odds of the license lottery. The winning probability decreased from
9.4% in January 2011 to 0.7% by the end of 2014. Columns (4)-(7) use different combinations of IVs. Standard errors are clustered
at the neighborhood level.
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Table A8: Speed Traffic Density Elasticity Estimate

(1) (2) (3) (4) (5)
Panel A: Elasticity log(Speed) on log(Density)

Region 2-3 Ring Roads 3-4 Ring Roads 4-5 Ring Roads 5-6 Ring Roads All
Log of Density (IV) -1.250 -1.185 -1.287 NA -1.099

(0.148) (0.111) (0.417) (0.089)
Observations 45,152 49,351 29,241 32,926 156,670
Average speed (km/h) 28.00 30.39 32.86 31.20 30.3

Panel B: Speed on log(Density)
Region 2-3 Ring Roads 3-4 Ring Roads 4-5 Ring Roads 5-6 Ring Roads All
Log of Density (IV) -36.825 -37.067 -42.660 NA -32.475

(4.072) (2.787) (14.152) (2.429)
Observations 45,152 49,351 29,241 32,926 156,670
Implied Elasticity -1.34 -1.35 -1.55 -1.18

Note: This table presents 2SLS results on the speed-density relationship by ring-road segments (e.g., between the 2nd and 3rd ring

roads). Panel A presents results from a log-log specification, while Panel B presents results from a linear-log specification. The

segment within the 2nd ring road is omitted due to the lack of observation. The dependent variable is ln(speed in km/h), log of speed

in km per hour, and the key explanatory variable is log(traffic density in the number of cars/lane-km). The IVs are based on the

driving restriction policy which has a preset rotation schedule using the last digit of the license plate number. They include a policy

indicator for days when vehicles with a license number ending 4 or 9 are restricted from driving and interactions between this variable

and hour-of-day dummies. Our sample consists of road segments by hour during peak hours within the 6th ring road in 2014. We

focus on the top quintile observations with traffic density larger than 35 cars per lane-km. The control variables include temperature

(oC), wind speed (km/h), visibility (km), dummies for wind directions and sky coverage at the hourly level. The time and spatial fixed

effects include day-of-week, month-of-year, hour-of-day, holiday, and monitoring stations fixed effects. Parentheses contain standard

errors clustered by road segments.
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Table A9: Model Prediction on Changes in Housing Price Gradient due to Driving Restriction

(1) (2) (3)

Subway Distance -0.725 -0.302
(0.066) (0.159)

Subway Distance × CDR -0.034 -0.034 -0.034
(0.001) (0.001) (0.001)

Neighborhood FE N Y N
Property FE N N Y
Adjusted R2 0.329 0.400 0.999

Note: The analysis is based on the 2014 cohort in the mortgage data with 7,136 observations. We simulate the equilibrium housing
prices under the 2008 network for two scenarios: with and without driving restrictions. We then regress the simulated housing prices
(in Y1k/m2) on the observed distance (in km) to the nearest subway station in the 2008 network. Standard errors clustered at the
neighborhood level. Driving restrictions steepen the price gradient with respect to subway access, consistent with Jerch et al. (2021).

Table A10: Effect of Subway Expansion on Income Sorting

Dep. variable: ∆ household income (Y)
(1) (2) (3) (4)

Within .5km of a new subway station 914.022
(554.819)

Within 1km of a new subway station 1200.453
(343.442)

Within 1.5km of a new subway station 938.593
(335.135)

Distance to the nearest new Subway -215.796
(96.544)

Note: The analysis is based on the 2014 cohort of the mortgage data with 7,136 observations. The dependent variable is
the change in simulated household income under 2008 and 2004 subway networks, as depicted in Panel (c) of Appendix
Figure A5. All regressions include property fixed effects. The coefficient on ‘within x km of a new subway station’
measures changes in annual household income post the subway expansion for properties that are located within x km of
a new subway station that was built between 2008 and 2014. Standard errors clustered at the neighborhood level.
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Table A11: Simulation Results without Household Sorting

2008 Subway Network 2014 Subway Network
(1) (2) (3) (4) (5) (6)

No Policy Driving restriction Congestion pricing No Policy Driving restriction Congestion pricing
Baseline levels ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1)

Income relative to the median High Low High Low High Low High Low High Low High Low

Panel A: travel mode shares in percentage points and average speed
Drive 41.02 21.02 -6.49 -2.99 -2.87 -5.01 -1.26 -1.07 -7.68 -4.08 -4.69 -6.11
Subway 9.43 11.24 0.83 0.26 0.45 0.54 3.61 5.08 4.73 5.47 5.11 6.77
Bus 22.31 30.07 1.88 0.98 0.77 1.65 -1.35 -2.03 0.51 -1.05 -0.63 -0.60
Bike 16.08 24.08 1.48 0.73 0.64 1.72 -0.81 -1.57 0.55 -0.85 -0.32 -0.31
Taxi 2.17 1.32 1.24 0.55 0.65 0.57 -0.08 -0.07 0.99 0.41 0.40 0.34
Walk 8.98 12.26 1.06 0.47 0.37 0.53 -0.10 -0.34 0.91 0.09 0.13 -0.08
Speed (km/h) 21.49 3.82 3.61 1.76 5.39 5.09

Panel B: sorting outcomes
Distance to work (km) 18.56 15.66
Distance to subway (km) 5.33 4.30 -4.13 -3.45 -4.13 -3.45 -4.13 -3.45

Panel C: welfare changes per household (thousand Y)
Consumer surplus (+) -227.3 -31.0 -110.7 -83.2 207.7 117.0 -32.2 82.1 83.2 37.2
Toll revenue (+) 138.8 138.8 127.9 127.9
Subway cost (–) 103.0 103.0 103.0 103.0 103.0 103.0
Pollution reduction (+) 4.24 4.24 3.98 3.98 1.98 1.98 6.14 6.14 6.06 6.06
Net welfare -223.1 -26.8 32.1 59.6 106.7 16.0 -129.0 -14.7 114.1 68.1

Note: This table is similar to Table 6 but shuts down sorting. That is, households are not allowed to change residential locations. Consumer surplus estimates are recovered from
housing transaction prices and should be interpreted as total consumer surplus over a property’s life span. Toll revenue is net of the capital and operating costs of revenue collection.
Subway cost includes construction and operation costs. Both toll revenue and subway cost are the discounted sum over thirty years (which is approximately the lifespan of a property)
and allocated uniformly across households. Welfare benefits from pollution reduction arise from reduced tailpipe emissions. Net welfare is consumer surplus plus toll revenue and
environmental benefits minus subway costs. Column (1) reports results when no policy was in place. Columns (2) to (6) present differences from Column (1). Driving restriction
prohibits driving in one of five work days. Congestion pricing is set at Y1.13 per km as in Table 6. High-income household are those with income above the median.
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Table A12: Simulation Results with Alternative Housing Demand Elasticity

2008 Subway Network 2014 Subway Network
(1) (2) (3) (4) (5) (6)

No Policy Driving restriction Congestion pricing Subway Expansion + Driving restriction + Congestion pricing
∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1)

Income relative to the median High Low High Low High Low High Low High Low High Low

Panel A: travel mode shares in percentage points and average speed
Drive 41.58 21.39 -7.09 -3.36 -3.41 -5.37 -2.10 -1.62 -8.46 -4.57 -5.16 -6.38
Subway 9.03 10.78 1.24 0.67 0.79 0.94 4.64 6.13 5.81 6.51 5.27 6.89
Bus 22.47 30.49 1.78 0.62 0.58 1.26 -1.57 -2.55 0.28 -1.59 -0.79 -1.04
Bike 15.98 24.03 1.58 0.79 0.76 1.77 -0.82 -1.68 0.49 -0.99 -0.16 -0.16
Taxi 2.19 1.32 1.20 0.55 0.64 0.57 -0.16 -0.11 0.90 0.36 0.40 0.36
Walk 8.75 12.00 1.29 0.73 0.65 0.83 0.00 -0.17 0.99 0.27 0.44 0.33
Speed (km/h) 21.40 3.83 3.83 1.54 5.13 5.35

Panel B: sorting outcomes
Distance to work (km) 18.59 15.67 0.01 0.01 -0.16 -0.07 0.32 0.21 0.38 0.20 0.13 0.15
Distance to subway (km) 5.33 4.30 -0.03 0.03 -0.03 0.03 -4.14 -3.44 -4.14 -3.44 -4.14 -3.44

Panel C: welfare changes per household (thousand Y)
Consumer surplus (+) -156.4 -21.5 -73.8 -59.0 163.5 82.3 -3.0 53.7 79.9 24.7
Toll revenue (+) 103.7 103.7 96.0 96.0
Subway cost (–) 103.0 103.0 103.0 103.0 103.0 103.0
Pollution Reduction (+) 4.25 4.25 4.25 4.25 1.69 1.69 5.79 5.79 6.03 6.03
Net welfare -152.1 -17.3 34.1 48.9 62.2 -19.0 -100.2 -43.5 78.9 23.8

Note: This table is the same as Table 6, except it uses linear housing demand estimates from Column (6) of the previous table (which corresponds to a higher demand elasticity).
Simulations use the 2014 cohort (households who purchased homes in 2014) and are based on parameters reported in Column (6) of Table 3, Column (3) of Table 4, and Column
(6) of the previous table. Consumer surplus estimates are recovered from housing transaction prices and should be interpreted as total consumer surplus over a property’s life span.
Toll revenue is net of the capital and operating costs of revenue collection. Subway cost includes construction and operation costs. Both toll revenue and subway cost are the
discounted sum over thirty years (which is approximately the lifespan of a property) and allocated uniformly across households. Net welfare is consumer surplus plus toll revenue
and environmental benefits minus subway costs. Column (1) reports results when no policy was in place. Columns (2) to (6) present differences from Column (1). Driving restriction
prohibits driving in one of five work days. Congestion pricing is set at Y1.13 per km as in Table 6. High-income households are those with income above the median.
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Table A13: Housing Demand - Nonlinear Parameters with Alternative Sampling

0.5% Sample 1% Sample
(1) (2)

Para SE Para SE

Demographic Interactions
Price (Ymill.) * ln(income) 1.153 0.018 1.030 0.016
Age in 30-45 * ln(distance to key school) -0.459 0.011 -0.420 0.010
Age > 45 * ln(distance to key school) -0.122 0.024 -0.123 0.021
Age in 30-45 * ln(home size) 1.681 0.034 1.486 0.029
Age > 45*ln(home size) 3.011 0.070 2.746 0.061
EVMale 0.831 0.064 0.755 0.006
EVFemale 0.976 0.069 0.893 0.006
Random Coefficients
σ(EVMale) 0.333 0.015 0.379 0.013
σ(EVFemale) 0.408 0.014 0.482 0.012

Log-likelihood -128,976 -168,808

Note: The table examines robustness to the sampling choice set and reports MLE estimates of the non-linear parameters in the housing
demand model using mortgage data from 2006-2014 with 77,696 observations. Column (1) constructs households’ choice set using
a 0.5% random sample of all houses sold during a two-month window around the purchase date of the chosen home. Column (2)
reproduces our preferred specification in Column (3) of Table 4 that uses a 1% random sample.

Table A14: Housing Demand - Linear Parameters with Alternative Sampling

Variables 0.5% Sample 1% Sample
(1) (2)

Price (in 1 million RMB) -7.417 -6.596
(0.590) (0.534)

Ln(property size) 4.355 3.879
(1.073) (0.969)

Building age -0.139 -0.132
(0.014) (0.013)

Complex FAR -0.019 -0.023
(0.037) (0.034)

Ln(dist. to park) -0.442 -0.424
(0.114) (0.103)

Ln(dist. to key school) 0.321 0.288
(0.128) (0.118)

Year-Month-District FE Y Y
Neighborhood FE Y Y

First-stage Kleinberg-Paap F 14.22 14.22
Avg. Price elasticity -1.91 -1.79

Note: This table examines robustness to the sampling choice set and reports IV estimates of linear parameters in housing demand.
Column (1) constructs households’ choice set using a 0.5% random sample of all houses sold during a two-month window around the
purchase date of the chosen home. It uses all three sets of price IVs. Column (2) reproduces our preferred specification in Column
(6) of Table 5 that uses a 1% random sample. Standard errors clustered at the neighborhood level.
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Table A15: Endogenous Amenities from Subway Expansion

(1) (2) (3) (4)
Dependent Var. ψnt ψnt

TWFE TWFE CSDID CSDID

1{subway} 0.25 0.15 0.43 0.40
(0.24) (0.23) (0.29) (0.30)

Year FE Yes Yes
District-Year FE Yes Yes

Note: The dependent variable ψ denotes the neighborhood-year FEs obtained from regressing δ jt on neighborhood and year inter-

actions, partialling out property price and attributes. 1{subway} takes the value of 1 if neighborhood n experienced new subway

expansions in time t. The unit of analysis is a neighborhood-year and the number of observations is 1,144. Standard errors clustered

by neighborhood are reported in parentheses.
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Table A16: Simulation Results with Housing Supply Adjustment at the Neighborhood Level

2008 Subway Network 2014 Subway Network
(1) (2) (3) (4) (5) (6)

No Policy Driving restriction Congestion pricing Subway Expansion + Driving restriction + Congestion pricing
∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1)

Income relative to the median High Low High Low High Low High Low High Low High Low

Panel A: travel mode shares in percentage points and average speed
Drive 41.65 21.44 -7.33 -3.53 -3.60 -5.43 -2.45 -1.89 -8.75 -4.79 -5.42 -6.61
Subway 9.02 10.77 1.38 0.81 0.92 1.10 5.02 6.58 6.21 6.99 5.50 7.22
Bus 22.44 30.47 1.81 0.59 0.52 1.06 -1.46 -2.43 0.37 -1.48 -0.71 -0.96
Bike 15.96 24.01 1.62 0.79 0.78 1.71 -0.81 -1.74 0.46 -1.08 -0.14 -0.21
Taxi 2.20 1.32 1.18 0.54 0.62 0.57 -0.21 -0.16 0.84 0.30 0.37 0.33
Walk 8.74 11.99 1.35 0.79 0.77 0.99 -0.09 -0.35 0.86 0.06 0.40 0.23
Speed (km/h) 21.49 3.85 4.02 0.95 4.50 4.98

Panel B: sorting outcomes
Distance to work (km) 18.52 15.61 0.02 0.02 -0.35 -0.24 0.86 0.72 0.96 0.74 0.47 0.51
Distance to subway (km) 5.28 4.24 -0.07 0.01 -0.14 -0.08 -4.08 -3.38 -4.08 -3.38 -4.09 -3.38

Panel C: welfare changes per household (thousand Y)
Consumer surplus (+) -229.8 -32.2 -83.3 -66.7 165.9 86.0 -65.2 51.9 69.6 18.9
Toll revenue (+) 135.0 135.0 128.5 128.5
Subway cost (–) 103.0 103.0 103.0 103.0 103.0 103.0
Pollution reduction (+) 4.29 4.29 4.51 4.51 1.08 1.08 5.09 5.09 5.67 5.67
Net welfare -225.5 -27.9 56.3 72.8 64.0 -16.0 -163.1 -46.0 100.7 50.0

Note: This table is similar to Table 6 but incorporates endogenous housing supply at neighborhood level. Simulations use the 2014 cohort (households who purchased homes in
2014) and are based on parameters reported in Column (6) of Table 3, Column (3) of Table 4, and Column (6) of Table 5. Consumer surplus estimates are recovered from housing
transaction prices and should be interpreted as total consumer surplus over a property’s life span. Toll revenue is net of the capital and operating costs of revenue collection. Subway
cost includes construction and operation costs. Both toll revenue and subway cost are the discounted sum over thirty years (which is approximately the lifespan of a property)
and allocated uniformly across households. Welfare benefits from pollution reduction arise from reduced tailpipe emissions. Net welfare is consumer surplus plus toll revenue and
environmental benefits minus subway costs. Column (1) reports results when no policy was in place. Columns (2) to (6) present differences from Column (1). Driving restriction
prohibits driving in one of five work days. Congestion pricing is set at Y1.13 as in Table 6. High-income households are those with income above the median.
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Table A17: Simulation Results with Ring-Road-Quadrant Congestion

2008 Subway Network 2014 Subway Network
(1) (2) (3) (4) (5) (6)

No Policy Driving restriction Congestion pricing No Policy Driving restriction Congestion pricing
Baseline levels ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1) ∆s from (1)

Income relative to the median High Low High Low High Low High Low High Low High Low

Panel A: travel outcomes
Drive 41.74 21.51 -7.40 -3.59 -3.76 -5.58 -2.31 -1.76 -8.84 -4.85 -5.70 -6.77
Subway 9.00 10.76 1.33 0.72 0.90 0.99 4.67 6.07 5.88 6.50 5.37 6.90
Bus 22.39 30.43 1.89 0.71 0.70 1.34 -1.47 -2.48 0.45 -1.45 -0.56 -0.88
Bike 15.92 23.98 1.68 0.89 0.87 1.86 -0.74 -1.59 0.63 -0.84 0.03 0.02
Taxi 2.21 1.33 1.16 0.52 0.60 0.54 -0.18 -0.12 0.84 0.32 0.36 0.33
Walk 8.74 11.99 1.33 0.74 0.70 0.84 0.03 -0.12 1.04 0.32 0.50 0.40
Speed 22.46 3.46 3.38 1.25 4.48 4.69

Panel B: housing market outcomes
Distance to work (km) 18.57 15.66 -0.01 0.03 -0.19 -0.05 0.36 0.17 0.39 0.18 0.13 0.13
Distance to subway (km) 5.34 4.30 -0.04 0.04 -0.03 0.03 -4.14 -3.44 -4.14 -3.44 -4.14 -3.44

Panel C: welfare changes per household (thousand Y)
Consumer surplus (+) -243.7 -36.2 -120.0 -77.1 206.2 96.6 -37.0 59.3 78.3 23.1
Toll revenue (+) 140.3 140.3 129.0 129.0
Subway cost (–) 103.0 103.0 103.0 103.0 103.0 103.0
Pollution Reduction (+) 4.35 4.35 4.31 4.31 1.67 1.67 5.77 5.77 6.06 6.06
Net welfare -239.4 -31.8 24.7 67.5 104.9 -4.8 -134.2 -38.0 110.4 55.2

Note: This table is similar to Table 6, except that congestion is measured at the ring-road-quadrant level. Simulations are conducted using data from the 2014 cohort, which consists
of households who purchased homes in 2014. The parameters used in the simulations are reported in Column (6) of Table 3, Column (3) of Table 4, and Column (6) of Table 5.
We incorporate household sorting but keep the housing supply fixed. Consumer surplus estimates are recovered from housing transaction prices and should be interpreted as total
consumer surplus over a property’s life span. Toll revenue is net of the capital and operating costs of revenue collection. Subway cost includes construction and operation costs.
Both toll revenue and subway cost are the discounted sum over thirty years (which is approximately the lifespan of a property) and allocated uniformly across households. The net
welfare is calculated as the consumer surplus plus toll revenue and environmental benefits minus subway costs. Column (1) reports the results when no policy was in place. Columns
(2) to (6) present differences from Column (1). The driving restriction policy prohibits driving on one of five workdays. Congestion pricing is set at Y1.13 per km as in Table 6.
High-income households are those with income above the median.
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Table A18: Region-Specific Speed Changes under Different Policy Scenarios

Percentage changes compared to baseline

(1) (2) (3) (4) (5) (6)
Zone Baseline (km/h) Restriction Congestion Subway Sub+R Sub+C

Within 2 15.8 16.7% 11.1% 3.2% 19.6% 14.4%
Within 2-3 21.0 16.4% 15.0% 4.4% 20.3% 19.4%

SW 3-4 25.5 16.7% 18.0% 8.1% 23.3% 25.9%
SE 3-4 23.5 16.4% 16.6% 6.1% 21.3% 22.9%
NW 3-4 21.3 17.4% 15.4% 3.6% 20.4% 19.0%
NE 3-4 22.1 15.9% 14.6% 2.5% 18.2% 17.4%

SW 4-5 27.4 17.8% 20.1% 13.4% 28.3% 32.6%
SE 4-5 25.2 16.5% 18.5% 6.6% 22.0% 25.0%
NW 4-5 22.9 16.9% 16.6% 4.7% 20.7% 21.0%
NE 4-5 21.7 16.1% 15.1% 4.3% 19.9% 19.4%

SW 5-6 31.0 9.6% 10.6% 8.7% 16.2% 18.5%
SE 5-6 24.8 8.5% 9.8% 4.3% 12.0% 13.9%
NW 5-6 23.0 8.8% 9.3% 3.5% 11.6% 12.4%
NE 5-6 23.4 8.5% 10.1% 3.0% 11.1% 12.8%

Outside 6 41.3 10.1% 11.8% 5.6% 14.4% 16.9%

Note: This table displays the percentage changes in speed for each ring-road-quadrant relative to the baseline under different trans-

portation policies. Each row denotes a separate ring-road-quadrant. For example, ‘Within 2’ stands for the area within the 2nd

ring-road, and ‘SW 3-4’ denotes the Southwestern quadrant between the third and fourth ring roads. Values are colored in different

shades according to their magnitudes. Simulations are conducted using data from the 2014 cohort, which consists of households who

purchased a house in 2014. The results are based on simulations with ring-road-quadrant congestion.
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Table A19: Substitution Patterns with and without Random Coefficients

(1) (2) (3) (4)
No Policy Driving restriction Congestion pricing Subway expansion

Baseline levels ∆ s from (1) ∆ s from (1) ∆ s from (1)
Income relative to the median High Low High Low High Low High Low

Panel A: changes in travel model choices, with random coefficients (the preferred specification)

Drive 41.65 21.44 -7.17 -3.40 -3.48 -5.39 -2.14 -1.66
Bus 22.44 30.47 1.78 0.60 0.57 1.24 -1.54 -2.53
Bike 15.96 24.01 1.60 0.80 0.77 1.78 -0.80 -1.64
Subway 9.02 10.77 1.29 0.70 0.84 0.96 4.62 6.06
Walk 8.74 11.99 1.31 0.74 0.67 0.83 0.02 -0.13
Taxi 2.2 1.32 1.19 0.55 0.63 0.57 -0.16 -0.11
Avg. Speed (km/h) 21.49 3.83 3.83 1.49

Panel B: changes in travel mode choices, without random coefficients

Drive -9.15 -5.41 -2.48 -3.28 -0.43 -0.35
Bus 3.37 1.92 0.82 1.22 -0.24 -0.51
Bike 2.67 1.63 0.67 0.98 -0.14 -0.31
Subway 1.35 0.81 0.42 0.50 0.92 1.32
Walk 1.50 0.92 0.49 0.51 -0.08 -0.13
Taxi 0.26 0.13 0.08 0.07 -0.02 -0.02
Avg. Speed (km/h) 4.59 2.97 0.16

Note: The model without random coefficients produces counter-intuitive substitution patterns and very different speed improvements
from our preferred specification. Column (1) reports results when no policy was in place. Columns (2)- (4) present differences from
Column (1). Congestion pricing is fixed at Y1.13 per km for both panels, as in Table 6 in the manuscript. High-income households
are those with income above the median.

Table A20: Sorting Patterns with and without Random Coefficients

(1) (2) (3) (4)
No Policy Driving restriction Congestion pricing Subway expansion

Baseline levels ∆ s from (1) ∆ s from (1) ∆ s from (1)
High Low High Low High Low High Low

Panel A: housing market outcomes, with random coefficients (the preferred specification)
Distance to work (km) 18.987 13.674 0.013 0.014 -0.187 -0.071 0.329 0.146

Panel B: housing market outcomes, without random coefficients
Distance to work (km) 18.987 13.674 -0.037 0.101 -0.657 -0.258 0.116 0.001

Note: The model without random coefficients produces different sorting patterns from our preferred specification. Column (1) reports
results when no policy was in place. Columns (2)-(4) present differences from Column (1). Congestion pricing is set at Y1.13 per
km as in Table 6.
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Table A21: Welfare Implications with and without Random Coefficients

(1) (2) (3) (4)
No Policy Driving restriction Congestion pricing Subway expansion

Toll:Y1.13/km
Baseline levels ∆ s from (1) ∆ s from (1) ∆ s from (1)
High Low High Low High Low High Low

Panel A: welfare changes per household in Y1,000, with random coefficients (the preferred specification)

Consumer surplus (+) -227.1 -32.7 -98.2 -73.1 220.3 100.0
Toll revenue (+) 137.4 137.4
Subway cost (–) 103.0 103.0
Pollution reduction (+) 4.3 4.3 4.3 4.3 1.7 1.7
Net welfare -222.8 -28.4 43.5 68.6 119.0 -1.3

Panel B: welfare changes per household in Y1,000, without random coefficients

Consumer surplus (+) -1447.6 -338.0 -797.6 -394.2 118.5 60.5
Toll revenue (+) 156.2 156.2
Subway cost (–) 103.0 103.0
Pollution reduction (+) 6.3 6.3 3.9 3.9 0.2 0.2
Net welfare -1441.3 -331.7 -637.5 -234.1 15.5 -42.5

Note: The model without random coefficients produces very different welfare implications from our preferred specification. Con-
sumer surplus estimates are recovered from housing transaction prices and should be interpreted as total consumer surplus over a
property’s life span. Toll revenue is net of the capital and operating costs of revenue collection. Subway cost includes construction
and operation costs. Both toll revenue and subway cost are the discounted sum over thirty years (which is approximately the lifes-
pan of a property) and allocated uniformly across households. Welfare benefits from pollution reduction arise from reduced tailpipe
emissions. Net welfare is consumer surplus plus toll revenue and environmental benefits minus subway costs. Column (1) refers to
the baseline when no policy was in place. Columns (2)-(4) present differences from Column (1). Congestion pricing is fixed at Y1.13
per km for both panels, as in Table 6.
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