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Abstract

Electric vehicle (EV) battery costs have declined by over 90% in the past decade. This study

investigates the role of learning-by-doing (LBD) in driving this reduction and its interaction

with two major government policies – consumer EV subsidies and local content requirements.

Leveraging rich data on EV models and battery suppliers, we develop and estimate a structural

model of the global EV industry that incorporates heterogeneous consumer choices and strate-

gic pricing behaviors of EV producers and battery suppliers. The model allows us to recover

battery costs for each EV model and quantify the extent of LBD in battery production. The

learning rate is estimated to be 7.5% during our sample period after controlling for industry

technological progress, economies of scale, input costs, and EV assembly experience. LBD

magnified the effectiveness of consumer EV subsidies by several folds and generated com-

plementarity among subsidies across countries. Upstream battery suppliers capture a small

fraction of the benefits brought by LBD to downstream EV producers and consumers, and con-

sumer EV subsidies improved social welfare by accelerating LBD and reducing battery costs.

China’s local content requirement helped domestic suppliers gain a competitive advantage at

the expense of consumers and foreign suppliers, but its domestic welfare implications would

shift from positive to negative if implemented five years later.
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1 Introduction

Electrifying passenger transportation through the widespread adoption of electric vehicles (EVs)

and simultaneously transitioning to a cleaner electricity grid is a crucial strategy to mitigate climate

change. To achieve this, many countries have set ambitious targets for transportation electrification

and implemented policies to promote EV adoption. Historically, the high upfront cost of EVs,

primarily driven by expensive lithium-ion EV batteries, constituted a major barrier to widespread

adoption. Over the past decade, however, EV battery costs have decreased by almost 90% between

2010 and 2020 (Bloomberg NEF, 2023). Industry experts attributed this substantial cost reduction

largely to learning-by-doing (LBD), where production experience leads to lower unit production

costs through reductions in scrap rates and improvements in production efficiency.1 In addition,

factors such as technological progress and increasing production scale might also have contributed

to this dramatic decline in costs.

Despite the importance of battery costs in the diffusion of EV technology, there is a lack of

credible causal evidence on the size and nature of LBD and a limited understanding of how LBD

interacts with various government policies in the EV industry. This paper aims to address these

gaps by: a) quantifying LBD and its contribution to the observed reduction in EV battery costs over

time, and b) assessing how LBD interacts with the two prominent classes of government policies –

consumer subsidies and local content requirements – on domestic and global EV diffusion, market

share dynamics, and social welfare.

Quantifying LBD is crucial for understanding the broad impacts of these policies. First, con-

sumer subsidies have been widely adopted worldwide and amounted to $43 billion in 2022 (In-

ternational Energy Agency, 2023). For example, the U.S. Inflation Reduction Act (IRA) of 2022

offers subsidies of up to $7,500 per EV for eligible purchases, while China provided generous sub-

sidies to EV buyers between 2010 and 2022. LBD generates a positive “feedback loop”: subsidies

drive higher EV adoption, which increases experience in battery production. LBD associated with

the enhanced production experience reduces battery costs and EV prices. These cost reductions and

lower EV prices, in turn, further accelerate EV adoption, amplifying the direct effects of consumer

subsidies and other supportive policies.

Second, the preferential treatment of domestic battery producers has become part of a growing

spectrum of industrial policies in recent years. During 2016-2019, China implemented a whitelist

policy that restricted EV subsidies to vehicles using batteries from government-approved (domes-

1Theodore Wright, an aeronautical engineer, was among the first to attribute the observed decline in the labor require-
ment for airplane manufacturing to “learning by doing” (Wright, 1936). Wright’s Law has since been commonly used
to describe the reduction in unit production cost as a function of cumulative experience in manufacturing industries.
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tic) producers. Similarly, to qualify for consumer subsidies, the U.S. IRA mandates EV models

to source a certain fraction (in terms of value) of critical minerals and battery components from

firms in North America or free-trade agreement partner countries. The broad implications of local

content requirements hinge crucially on the size and scope of LBD. If LBD predominantly occurs

within firms (i.e., internal LBD) and concentrates among industry leaders, these policies could ac-

celerate LBD by consolidating production in a smaller set of firms. This would result in reduced EV

battery prices but may come at the cost of increased market concentration. Conversely, if policies

across countries erect regional barriers and redirect production toward domestic (and potentially

less efficient) producers, they might slow down global LBD and hinder the further penetration of

EVs. The overall impact on both domestic and global EV adoption is ambiguous and necessitates

empirical investigation.

Third, the battery supply network is global, with EV producers worldwide sourcing from battery

suppliers concentrated in three countries: China, Japan, and South Korea. The global nature of the

battery supply network, an increasingly common phenomenon in many industries, implies that

policies implemented in one country can create cross-border spillovers and generate repercussions

extending well beyond country borders. Consequently, a global analysis is essential to accurately

evaluate policy implications.

To that end, this paper takes advantage of a comprehensive database on the global EV and

battery industries that have three key components. The first data set consists of annual EV sales

from 2013 to 2020 in thirteen countries, which collectively accounted for over 95% of global EV

sales. The data report sales and vehicle and battery attributes by model by country for both battery

EVs (BEVs) and plug-in hybrid EVs (PHEVs). The second data set contains information on battery

suppliers, including plant location and, crucially, the list of EV models supplied. The third data set

contains financial incentives for EV purchases in each country over time. In addition, we have also

collected socio-economic variables and household surveys on vehicle ownership across countries.

Estimating the extent of LBD entails addressing two key challenges. First, we do not observe

systematic data on battery costs at the vehicle-model level, which are proprietary in nature. To

address this challenge, we develop a framework of price-setting behaviors of battery suppliers and

EV producers to infer upstream and downstream markups. This allows us to recover battery costs

based on observed vehicle prices and estimated demand elasticity. We investigate and estimate

a variety of supply-side models, including Nash-Bargaining (simultaneous vs. sequential) and

linear pricing, with and without incorporating battery suppliers’ forward-looking behavior. We

also validate our battery cost estimates using industry reports and trade data.

Second, firm experience (i.e., cumulative production) that underlies LBD is potentially endoge-
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nous and correlated with unobserved marginal cost shocks in battery production. For example,

efficient firms with favorable cost shocks are more likely to sell a large quantity and accumulate

more experience. We construct an IV for battery supplier experience by exploiting differences in

suppliers’ exposure to downstream EV subsidies, which vary over time and across vehicle models

sold in different countries. The intuition is that suppliers selling batteries to countries with more

generous EV subsidies will experience a larger increase in cumulative production than those selling

in markets with lower subsidies. If LBD effects are present, battery costs for the former suppliers

will decline more rapidly than for the latter group, ceteris paribus. We also construct a second

set of IVs by leveraging China’s whitelist policy, which generated exogenous variation in produc-

tion experience across battery suppliers. In addition, we include a rich set of controls to capture

technological progress etc.

Our empirical analysis delivers five key findings. First, the learning rate is estimated to be

7.5% after controlling for technological advancements, experience in EV assembly, input costs,

and economies of scale. This implies that doubling battery production experience would reduce

unit production costs by 7.5%. From 2013 to 2020, LBD accounted for a sizable 35.5% of the

overall decline in battery costs. Technological advancements were responsible for an additional

39.9% of the cost reduction, with the remainder explained by LBD in EV assembly and changes

in battery chemistry, input costs, and plant capacity (economies of scale). On average, the learning

benefit derived from one unit of other firms’ production is 4.4% of that from their own experience

(though the coefficient is insignificant). Smaller producers, constrained by limited production ex-

perience, derive 56% of their learning from other firms, whereas leading battery producers gain

predominantly from their own experience.

Second, LBD greatly amplifies the sales impact of EV subsidies through positive feedback

loops. In the absence of LBD, subsidies across different countries are estimated to increase cu-

mulative global EV sales by 29.9% during the sample period, consistent with findings in existing

studies (Springel, 2019; Li et al., 2021) that focus on the short-term effects of EV purchase sub-

sidies. When both consumer subsidies and LBD were in effect, global EV sales surged by 170%

relative to the baseline with neither subsidies nor LBD. This combined effect is 60% greater than

the sum of the effects from subsidies and LBD individually, highlighting their complementarity. As

we discuss below, the welfare benefits of subsidies are also dramatically enhanced by LBD. These

findings underscore the critical importance of accounting for LBD when evaluating the efficacy and

cost-effectiveness of government policies designed to promote EV adoption. Ignoring LBD would

lead to a substantial underestimation of the long-term benefits of such policies.

Third, consumer subsidies in one country generate global spillovers through LBD in battery
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production, but the magnitude of spillovers hinges critically on the nature of the supply chain

network and trade patterns. For example, the estimated $13.10 billion in U.S. subsidies generated

$16.47 billion in global welfare gains, measured as the sum of consumer surplus and firm profit

on a global scale minus subsidy expenditure. U.S. (and Canada) captured 49% of these welfare

gains, as the interaction between subsidies and LBD significantly reduced input costs (batteries)

for domestic EV producers and lowered vehicle prices for domestic consumers. U.S. subsidies also

benefited battery suppliers in Japan and South Korea, which captured 28% of the global welfare

gains. Europe also benefited significantly from U.S. subsidies; in contrast, China captured only 3%

of the global gains. This modest share reflects China’s limited trade in EVs and EV batteries with

foreign countries during our sample period.

In a similar manner, European governments invested $16.44 billion in EV purchase subsidies,

resulting in $11.60 billion in global welfare gains, of which only 26% were captured by the EU.

This relatively low capture rate is driven by Europe’s higher import share of EVs and the widespread

use of uniform subsidies, the latter of which was less effective in generating consumer surplus

compared to the battery capacity-based subsidies in the U.S. (Barwick, Kwon, and Li, 2024). In

contrast, China captured 92.6% of the global welfare gains from its subsidies due to China’s limited

EV imports and the fact that the majority of its EV producers source batteries domestically.

Fourth, upstream LBD creates significant externalities through the supply chain, with upstream

firms capturing only a small fraction of the associated economic benefits due to the oligopolistic

nature of the supply chain. Our simulations indicate that CATL captures 13.5% of the total surplus

generated by its increased LBD while Panasonic captures 14.7%. These findings suggest that the

privately chosen experience level (and the degree of LBD) is unlikely to be socially optimal, and

government subsidies have the potential to address the under-provision of LBD.

Lastly, China’s whitelist policy benefited domestic battery suppliers at a cost to other countries.

The EU, Japan and South Korea, and the U.S. and Canada collectively incurred $5.88 billion in

welfare loss. This was driven by a shift in global battery production from more efficient Japanese

and South Korean battery suppliers to (at the time) higher-cost Chinese suppliers. Within China,

while battery suppliers reaped gains, consumers bore the burden of higher EV prices, and EV firms

initially suffered but eventually gained from faster domestic LBD as the whitelist policy facilitates

sales concentration in top domestic suppliers. China’s whitelist was introduced at a strategically

favorable time, when the learning curve for battery production was steep. Had the whitelist policy

been delayed to 2021-2024, China would have faced net losses, as consumer welfare losses would

have outweighed the gains to battery suppliers. The negative impact on other countries would

become much smaller. These results highlight the important trade-offs inherent in protective poli-
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cies that distort market forces. We believe that our analyses also offer valuable insights into the

implications of the U.S. IRA and local content requirements considered in other countries.

Our study is related to several strands of literature. First, it adds to the growing economics lit-

erature on the adoption of EVs (Li et al., 2017; Li, 2023; Springel, 2019; Muehlegger and Rapson,

2022; Remmy, 2022; Barwick, Kwon, and Li, 2024). While these studies focus on understanding

demand responses to consumer subsidies and the role of charging infrastructure, they do not ac-

count for LBD in the EV battery industry or the resulting feedback loop between reduced battery

production costs and increased EV demand. Consequently, these studies may underestimate the

impacts and cost-effectiveness of consumer subsidies and other supportive policies on EV adop-

tion. Our study is the first in the literature to quantify LBD in the global EV battery industry and

take it into account when assessing the broad impacts of EV policies. The results highlight that

ignoring even moderate levels of LBD would significantly underestimate the impact of supportive

government policies on EV adoption.

Second, this study contributes to the empirical literature on LBD that has been documented in

a variety of industries (Argote and Epple, 1990; Head, 1994; Irwin and Klenow, 1994; Benkard,

2000; Thompson, 2001; Thornton and Thompson, 2001; Benkard, 2004; Ohashi, 2005; Covert and

Sweeney, 2022). Except for Covert and Sweeney (2022), all the studies cited above relied on data

on input requirements or costs associated with producing a product, but these data are often hard to

obtain due to their proprietary nature. Our study develops a new methodology for estimating LBD

without data on inputs and production costs. It exploits variations in prices and quantities of the

final products (i.e., EVs) and information on the vertical links between final good producers and

intermediate input suppliers. The methodology could be applied to estimate LBD in the production

of intermediate inputs in other context.

Third, this paper contributes to the emerging literature that highlights the significant role of

recent industrial and trade policies in the development and diffusion of new energy technologies

such as EVs and solar panels (Allcott et al., 2024; Bollinger et al., 2024; Banares-Sanchez et al.,

2024; Gerarden, 2023; Head et al., 2024). Our work is also related to Goldberg et al. (2024), which

examines the role of industrial policies and LBD in the global semiconductor industry. We add to

this literature by quantifying the size and scope of LBD in the EV battery industry. More impor-

tantly, our findings underscore that learning in the upstream sector not only provides a rationale

for supportive policies, such as subsidies in the downstream sector, but also amplifies the impact of

these policies on technology adoption and social welfare.

Lastly, this paper is related to studies that analyze vertical relationships between upstream (in-

put) suppliers and downstream producers (Horn and Wolinsky, 1988; Chipty and Snyder, 1999;
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Crawford and Yurukoglu, 2012; Grennan, 2013; Gowrisankaran, Nevo, and Town, 2015; Ho and

Lee, 2017; Fan and Yang, 2020). Our analysis builds on the methodology in these papers and

develops a framework that leverages the vertical relationships to study LBD among the upstream

suppliers. We explore and estimate a variety of vertical models and verify the robustness of our

LBD estimate across different modeling assumptions. We also extend the existing vertical litera-

ture by considering firm forward-looking behavior in a dynamic bargaining model.

2 Data and Descriptive Evidence

2.1 Battery Primer and Sources of LBD

We provide a primer on EV batteries and discuss how LBD arises in the battery production process.

BEVs and PHEVs use lithium-ion batteries, which feature lithium as one of the key minerals in

cathodes and graphite as the primary material in anodes. The chemical composition of the cathode

is a major determinant of battery performance. There are three main types of lithium-ion batteries

based on cathode chemistries: NMC (Nickel Manganese Cobalt), NCA (Nickel Cobalt Aluminum),

and LFP (Lithium Iron Phosphate).2

Battery packs used in EVs consist of multiple interconnected modules, each made up of tens

to hundreds of interconnected battery cells, which account for 70-80% of the battery pack’s cost

(Bloomberg NEF, 2023). Battery cell production has at least three key features that could contribute

to LBD. First, the production process is highly complex and governed by hundreds of tuning pa-

rameters. The interconnected system needs to be constantly fine-tuned and optimized to achieve

efficiency. Second, the production process is very sensitive to material purity and requires stringent

clean-room standards. Tiny amounts of impurities can cause high scrap and low yield rates.3 Third,

the industry has been undergoing continuous technological advances in new chemistry composi-

tion and production techniques, which have important implications for production costs. All these

features suggest that production know-how by managers and engineers gained through experience

could help improve production efficiency and reduce scrap, both leading to lower costs.4

2NMC batteries, favored by American and European automakers, offer higher energy density but are more expensive
due to costly manganese and cobalt. NCA batteries are mainly used by Tesla and sourced from Panasonic. Chinese
automakers, like BYD, prefer LFP batteries for their lower cost and thermal stability. In 2020, NMC, NCA, and LFP
batteries held 71%, 21%, and 6% of the global market share, respectively (International Energy Agency, 2021). By
2023, LFP’s share surged to 40% globally due to its cost advantage, while NCA’s share fell to 8%.

3Even industry leaders face challenges with high scrap rates. Tesla and Panasonic’s Nevada Gigafactory, launched
in 2017, initially had a scrap rate of 80–90%, which took years to reduce to 15%. Source: https://www.
autoweek.com/news/a46628833/early-production-battery-plant-scrap-rates/#.

4A 2018 report by Boston Consulting Group indicates that the most common challenges in battery production have
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The empirical literature on LBD has examined a variety of industries. In labor-intensive in-

dustries such as aircraft manufacturing and shipbuilding, learning is shown to occur as production

workers become more efficient at performing tasks through repetition (Benkard, 2000; Thompson,

2001). In contrast, similar to semiconductors (Irwin and Klenow, 1994), battery production is more

capital-intensive, where a key channel for learning involves the fine-tuning of production processes

and techniques by engineers and managers.

2.2 Data Description

The empirical analysis relies on several rich data sets on global EV and EV battery industries.

EV Sales and Attributes The first data set, sourced from EV Volumes and IHS Markit, contains

annual EV sales and vehicle price and attributes by model for each of the 13 countries that reported

the largest EV sales from 2013 to 2020. These countries collectively accounted for 95% of global

EV sales during the sample period.5 Appendix Figure A1 shows the trend in EV sales by coun-

try/region in Panel (a) and the market share of EVs in the new vehicle market as well as the target

for zero-emission-vehicles (ZEVs, which are primarily EVs) by country-year in Panel (b). Since

the introduction of mass-market EV models in 2010, worldwide passenger EV sales have grown to

14.2 million units or 18.5% of the passenger vehicle market in 2023. There is a large variation in

EV penetration across countries. China became the largest EV market in 2015 and accounted for

59% of global new EV sales in 2023. In terms of EV’s market share in the new vehicle market,

Norway has by far the highest share of 90.4% in 2023, while it was 34% in China, 21.4% in Europe,

and 9.4% in the US, respectively.

Battery Suppliers The second data set from EV Volumes contains information on battery charac-

teristics for each EV model (e.g., battery capacity and battery chemistry) and, crucially, the identity

of battery suppliers. This data set allows us to establish vertical relationships between upstream

battery suppliers and downstream EV producers. We construct the experience variable (i.e., cumu-

lative production) for each battery supplier in each year based on the vertical supply relationships

and data on EV sales. We also collected data on the production plants owned by each battery

supplier, including production capacity, start-up year, and plant location (see Appendix A).

Panels (a) and (b) of Figure A2 present the supply network in 2013 and 2020, respectively.

The left side of the figure displays the top six battery producers, while the right side reports the

to do with yield rate/scrap and efficiency/process time. Engineers need to rely on experience, rather than physical
correlations, to adjust parameters in order to optimize the production process (Küpper et al., 2018).

5The 13 countries include Austria, Canada, China, France, Germany, Japan, Netherlands, Norway, Spain, Sweden,
Switzerland, the UK, and the US.
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eight largest EV producers. The thickness of the lines represents the battery sales volume in units.

Both battery production and EV manufacturing are concentrated, illustrating a bilateral oligopoly

market structure. In addition, EV producers often source from multiple battery suppliers, and

battery suppliers sell to multiple EV producers. The only exceptions are BYD and AESC, which

are vertically integrated firms in our sample period.6 However, for any given EV model sold in a

particular country, once a battery supplier has been chosen, it is rare for the EV producer to switch

to a different battery supplier: only 4.3% of EV models switch battery suppliers. These features

inform our use of a bargaining model to characterize the vertical relationship.

EV Incentives The third data set contains financial incentives for EV buyers at the country, year,

and model levels as discussed in Barwick et al. (2023). The financial incentives are offered in

a variety of forms, including direct consumer subsidies, acquisition tax credits, and ownership

tax credits. For consistency across countries, we focus on EV incentives offered by the central

government.7 Subsidies for EV purchases vary across countries and over time. In addition, there is

considerable cross-model variation within a given country and year due to the fact that the amount

of subsidies is often based on vehicle attributes. For example, subsidies in the U.S. are based on an

EV’s battery capacity, with a minimum capacity of four kWh and a maximum subsidy of $7500.8

EV subsidies in China are based on vehicle driving range with a notched design (Barwick, Kwon,

and Li, 2024). These wedges in EV subsidies serve as a crucial source of exogenous variation in

the experience of different battery suppliers (those supplying to countries with generous subsidies

would sell more units).

Figure A3 reports the average EV subsidy (from the central government) by country during

2013-2020 in Panel (a) and the subsidy schedule over time in China in Panel (b). Norway has

the most generous subsidies, consistent with its high penetration of EVs. China’s attribute-based

subsidy from the central government was reduced over time and eventually phased out in 2022.

Auxiliary Data There are several pieces of auxiliary data. First, we collect socio-economic vari-

ables including annual gasoline prices by country from the World Bank and annual income statistics

by country from the World Inequality Database (https://wid.world/). Second, to facilitate

demand estimation, we leverage household surveys on new vehicle buyers for China during 2016-

6BYD produced batteries for its own EVs, and AESC only produced batteries for the Renault-Nissan-Mitsubishi al-
liance. These vertically integrated firms accounted for 14.5% of sales in our sample.

7The EV subsidies were not offered at the central level in Canada and Switzerland. For Canada, we construct a
population-weighted average based on subsidies offered by British Columbia, Quebec, and Ontario. For Switzerland,
we construct a population-weighted average based on tax credits offered by the cantons of Zurich, Lausanne, Basel,
Bern, and Geneva.

8The subsidy amount was $2500+$415*(capacity-4) but phased out following a pre-set schedule when an EV model
hit a cap of 200,000 (Lohawala, 2023). The subsidy policy was extended by the U.S. Inflation Reduction Act in 2023.
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2020 in China and for the U.S. in 2018 (Liang and Xiao, 2024; Leard, Linn, and Springel, 2024).

In particular, we construct moment conditions based on the average income of EV buyers for top

EV models in these two countries. Third, we obtain export data of Lithium-ion batteries from the

UN Comtrade database, annual import prices of key minerals for battery production by country,

including lithium carbonates, lithium oxides, manganese oxides, cobalt oxides, and nickel oxides

from the UN Comtrade database and, as well as mineral prices from the annual Mineral Commod-

ity Summaries published by the U.S. Geological Survey. Finally, to capture technological progress,

we compile information on the number of patents filed and granted by battery suppliers during

2008-2020 from the European Patent Office (EPO)’s PATSTAT database (see Barwick et al. (2024)

for detailed data construction procedure).

2.3 Descriptive Evidence

Table 1 presents summary statistics for key variables used in the analysis. During the sample period,

the average price of a BEV model was $45,000, supported by an average subsidy of $4,700 per unit,

while PHEV models had a higher average price of $72,000 and a lower average subsidy of $1,900.

The driving range of BEVs increased significantly from 105 km in 2013 to 206 km in 2020, with

an overall average of 171 km, alongside an increase in battery capacity from 30 kWh to 50 kWh

(with an average of 42 kWh). In contrast, PHEVs had a much shorter average driving range of 31

km and a battery capacity of 11.5 kWh, showing only modest improvements over the same period.

The estimate of LBD is fundamentally informed by the relationship between production expe-

rience and battery costs. In the absence of detailed micro-level transaction data between battery

suppliers and EV firms (which are commercial secrets), we examine the correlation between vehi-

cle prices – where battery costs constitute a significant share – and the production experience of

battery suppliers in Figure 1. We first use vehicle price to construct a proxy for battery costs by par-

tialling out vehicle attributes such as horsepower, size, driving range, and the PHEV dummy, along

with a rich set of country, brand, and year fixed effects. Panel (a) illustrates changes in these price

residuals (our proxy for battery costs) over time, with blue dots representing the average annual

price residuals per kWh. These residuals exhibit a substantial decline from 2014 to 2020, closely

matching the trend in battery costs reported by Bloomberg NEF (2023), shown as pink diamonds.

Panel (b) of Figure 1 presents a binned scatter plot of price residuals, where each observation

corresponds to a country-year-model. The figure reveals a strong and precisely estimated negative

relationship between price residuals and supplier experience, indicating that EV models supplied

by more experienced battery suppliers tend to have lower prices. Moreover, the figure highlights

that production experience increases with cumulative subsidies received by the battery supplier (as

9



reflected by the size of the dots), motivating a key IV strategy for identifying LBD.

From January 2016 to June 2019, China implemented a whitelist policy requiring EV models to

use batteries from government-approved “whitelist” producers – all of which were Chinese firms –

to qualify for subsidies.9 Figure A4 provides suggestive evidence of this policy’s impacts. During

this period, six major battery suppliers dominated the market: two Chinese firms (BYD and CATL),

two Japanese firms (AESC and Panasonic), and two South Korean firms (LG and Samsung). Before

the policy, Chinese suppliers had less production experience, and vehicles using their batteries were

sold at higher prices compared to those with batteries from non-Chinese suppliers (after adjusting

for vehicle attributes).

Panel (a) of Figure A4 depicts the share of EV models sourcing batteries from Chinese sup-

pliers, distinguishing between those sold in China (solid red line, left y-axis) and outside China

(dashed blue line, right y-axis). As intended by the policy, the share of EV models sold in China

that sourced batteries from Chinese suppliers rose from below 70% in 2016 to nearly 90% in 2019,

then declined after the policy was scrapped. During the whitelist period, the sales of BYD and

CATL – China’s largest battery suppliers on the whitelist – grew significantly faster than those of

the top four non-Chinese suppliers (Panel (b)). As BYD and CATL accumulated production ex-

perience, EV models using their batteries experienced a more rapid decline in residualized vehicle

prices compared to EV models using batteries from non-Chinese firms, as depicted in Panel (c).

The impact of this growth in experience among Chinese suppliers is also evident in Panel (a): for

EV models sold outside China, the share that sources batteries from Chinese firms was near zero in

2016, increased to 4% by 2019, and rose sharply to 11% by 2020. This significant increase reflects

the rapid cost reductions achieved by Chinese battery producers, consistent with the rapid battery

export price reduction as shown in the UN Comtrade data in Panel (d).

While the descriptive evidence presented above aligns with learning-by-doing (LBD) as a driv-

ing force, other confounding factors, such as technological advancements, changes in battery chem-

istry and input costs, and experience in EV assembly, may also play a role. The next section intro-

duces a structural model designed to quantify the extent and scope of LBD while accounting for

these potential confounding factors.

9This policy raised significant concerns about its compliance with WTO rules, particularly under the Agreement on
Subsidies and Countervailing Measures (SCM Agreement). Although no formal WTO case was filed, China removed
the policy in 2019 under widespread criticism from foreign firms and governments (USTR, 2019).
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3 Model

We develop a structural model that allows us to infer battery costs based on observed EV prices,

sales, and the time-varying vertical relationships between EV producers and battery suppliers. The

model features EV purchase decisions by heterogeneous consumers and price-setting behaviors

of EV producers and battery suppliers. We outline the key model elements here and discuss the

estimation strategy in Section 4.

We use the following notations throughout: 1) EV producer v, producing a set of vehicles

denoted by Ωv; 2) battery supplier b, supplying batteries for a set of vehicles Ωb; 3) consumer

i, considering whether to buy vehicle model j in country c in time (year) t; 4) vehicle price p jct

before subsidies, unit sales q jct , consumer subsidy φ jct , and battery price τ jct . We use bold terms to

denote vectors (or matrices). Specifically, vector mkmkmkv = {mkv
jct} j,c,t stands for the per-unit markup

for every vehicle model produced by all EV producers and vector mkmkmkb = {mkb
jct} j,c,t represents the

per-unit markups for all battery suppliers.

3.1 Consumer Demand and Downstream Markups

Consumer Demand EV demand is characterized by a random coefficient discrete choice model

following Berry, Levinsohn, and Pakes (1995). In each period t, consumer i in county c chooses

among the available EV models, as well as an outside option. Consumer i’s utility from buying

vehicle j is:
Ui jct = αi(p jct −φ jct)+X jctβi +ξ jct + εi jct . (1)

Consumers pay the post-subsidy price, which is retail price p jct net of consumer subsidy φ jct of-

fered by the central government. Vector X jct includes observed vehicle attributes, such as vehicle

size, driving range, horsepower, a PHEV dummy, as well as a rich set of fixed effects, including

market (country-by-year), automaker (e.g., GM or Hyundai), and body type (i.e., sedan, SUV, and

van) fixed effects. We allow preference parameters on price and other vehicle attributes, αi and βββ i,

to vary across consumers. Lastly, ξ jct represents unobserved product characteristics and demand

shocks, which render the price variable endogenous, and εi jct denotes i.i.d. preference shocks with

a type-I extreme value distribution.

EV Pricing Equation The retail price of an EV, p jct , can be written as:

p jct = mcb
jct︸ ︷︷ ︸

Battery cost

+ mcv
jct︸ ︷︷ ︸

Non-battery EV cost

+ mkb
jct︸ ︷︷ ︸

Battery markup

+ mkv
jct︸ ︷︷ ︸

EV markup

, (2)

where mcb
jct is the cost of battery and mcv

jct denotes the non-battery portion of the EV’s production

cost. Battery supplier b’s markup is denoted by mkb
jct and EV producer v’s markup is mkv

jct . We

11



proceed by first quantifying the upstream and downstream markups and the non-battery EV costs.

This allows us to recover the cost of producing batteries as the difference between EV prices and

these three components (up to some parameters).

The downstream markup mkv
jct is determined through the Bertrand-Nash competition and is

recovered after estimating demand. The non-battery portion of the EV production cost mcv
jct is

specified as a function of vehicle attributes. Both are standard practices in the literature. There are

several approaches to estimating the upstream markup mkb
jct , which we discuss in Section 3.2.

Recovering Downstream Markups We assume a Bertrand-Nash game among EV producers (or

Original Equipment Manufacturers, OEMs) that choose EV prices to maximize profit from selling

different vehicles in a country-year.10 Producer v’s profit is (suppressing country and time indices):

π
v(p) = ∑

j∈Ωv

(p j − τ j −mcv
j)q j(p,φ),

where τ j is the battery price for vehicle j (paid by firm v to its supplier), mcv
j is firm v’s marginal

cost of producing non-battery components, and p j − τ j −mcv
j is the per-unit markup. Vector p

denotes prices for all EVs in the market.

The first order condition (FOC) for vehicle price p j is given by:

q j + ∑
k∈Ωv

(pk − τk −mcv
k)︸ ︷︷ ︸

Vehicle markup, mkv
k

∂qk

∂ p j
= 0. (3)

Note that ∂qk
∂ p j

is known after demand estimation. Inverting the system of FOCs in Equation (3)

yields a vector of markups for EV producers mkmkmkv.

3.2 Upstream Markups

We explore a variety of supply-side models to recover upstream markups including two variations

of the Nash-in-Nash bargaining model (Horn and Wolinsky, 1988), the linear pricing model, and

a dynamic model that extends the static framework to incorporate forward-looking behaviors. Our

preferred approach is the bargaining model because it is well-suited to the market structure of the

EV supply chain with a small number of downstream firms and upstream suppliers. This approach

is more flexible than the textbook linear pricing model and uses data variation to infer which party

has greater bargaining power. We now discuss these models in turn.

10Joint ventures (JVs) are common in China. We assume JVs are separate OEMs from local partners that produce
their own indigenous brands. For example, SAIC-GM, the joint venture between Shanghai Automotive Industry
Corporation (SAIC) and GM, is recorded as an OEM in our analysis and sells Chevrolet, Buick, and Cadillac brands.
SAIC, which owns indigenous brands such as Roewe and Maxus, is considered a separate profit maximizer.
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Nash-in-Nash Bargaining Our first approach uses a bargaining model, where EV producers and

battery suppliers engage in bilateral negotiations to determine battery prices (with the exception

of BYD and AESC, which were vertically integrated with downstream EV producers). Each EV

producer-battery supplier pair {v,b} chooses battery price for vehicle j ∈ Ωv ∩Ωb (i.e., a vehicle

that is produced by v and sources from supplier b) to maximize the Nash product of their net gains

from trade, taking as given the battery prices chosen for other vehicles:

NPj(τ j,τ− j) = (πv −dv)︸ ︷︷ ︸
v’ gains from trade

(1−λ b) (πb −db)︸ ︷︷ ︸
b’ gains from trade

λ b

where λ b ∈ (0,1) is the bargaining weight of battery supplier b.11 We use πv and πb to denote the

profit of EV producer v and battery supplier b, respectively, and dv and db to denote the disagree-

ment payoff (profit if the negotiation fails). The battery supplier’s profit is similar to that for the

EV producer: πb(τ) = ∑ j∈Ωb
(τ j −mcb

j)q j(p,φ), where mcb
j denotes supplier b’s cost of producing

the battery used in vehicle j, and τ j −mcb
j = mkb

j is battery supplier b’s per-unit markup.

We assume that if v and b disagree over τ j, then vehicle j is not produced and consumers shift

to other EV models or the outside good.12 The FOC for battery price τ j is:

(1−λ
b)(πb −db)

∂πv

∂τ j
+λ

b(πv −dv)
∂πb

∂τ j
= 0. (4)

Simultaneous Contracting and Pricing In a vertical setting like ours with upstream suppliers

and downstream firms, there are two commonly used timing assumptions for modeling negotia-

tions: simultaneous contracting and pricing vs. sequential contracting and pricing. In the former

case (Draganska, Klapper, and Villas-Boas, 2010; Ho and Lee, 2017; Crawford et al., 2018; Sheu

and Taragin, 2021), battery price negotiation and vehicle price setting happen simultaneously. Con-

sequently, EV prices remain unchanged in the event of a bargaining breakdown. This is likely a

reasonable approximation in our setting, as EV prices are typically adjusted annually rather than

immediately following changes in battery prices. This timing assumption is also computationally

and conceptually much simpler than the sequential assumption and has been adopted by many

recent studies.

With this timing assumption, EV producer v’s disagreement payoff is:

dv,Simult(p) = ∑
k∈Ωv,k ̸= j

(pk − τk −mcv
k)q̃k(p,φ),

11We examine the boundary cases below, where λ b = 0 implies EV producers make take-it-or-leave-it (TIOLI) offers
to battery suppliers. When λ b = 1, battery suppliers make TIOLI offers to EV producers (in sequential bargaining),
which is equivalent to linear pricing.

12On average, a v and b pair only bargains over 2.3 distinct EV models within a market. Our results are likely similar
if we assume instead the entire portfolio that the pair is bargaining over is withdrawn when v and b disagree over j.
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where q̃k(p,φ) is the sales of vehicle k in the scenario where vehicle j is not produced due to a

disagreement. The formulation of EV producer v’s disagreement payoff is analogous. By com-

bining the FOCs defined in Equations (3) and (4) following Draganska, Klapper, and Villas-Boas

(2010), we can express the vector of battery suppliers’ markups as a function of vehicle producers’

markups (see Appendix B.1 for derivation):

mkmkmkb︸︷︷︸
Battery markup

=
λ b

1−λ b [TTT
b ⊗SSS]−1[TTT v ⊗SSS] mkmkmkv︸︷︷︸

Vehicle markup

≡ λ b

1−λ b mk
bmk
b

mk
b︸︷︷︸

Battery markup when λ b = 0.5

(5)

where ⊗ denotes element-by-element multiplication, and Tv and Tb are ownership matrices for EV

producers and battery suppliers, respectively. Matrix SSS denotes how market shares of all products

change upon disagreement. That is, the { j,k} term of SSS captures changes in sales of product

k when v and b disagree over the battery price for vehicle j. Ownership matrices are observed

from data, and SSS can be derived from the demand model after estimating consumer preferences.

The vector of EV producers’ markups, mkmkmkv, is backed out from Equation (3). Intuitively, upstream

markups depend on both the bargaining parameter and responsiveness of the battery supplier’s sales

to changes in the battery price. For example, if a small increase in battery price leads to a large

reduction in battery sales, then equilibrium upstream markups will tend to be modest. Equation (5)

suggests that battery markups can be recovered up to the bargaining parameter λ b after the demand

estimation.

Sequential Contracting and Pricing The second bargaining model we consider assumes se-

quential contracting and pricing (Crawford and Yurukoglu, 2012), where negotiations over battery

prices occur first, followed by price competition among EV producers. Different from the si-

multaneous timing assumption, this model allows vehicle producers to change EV prices after a

bargaining breakdown. For example, if Tesla and Panasonic fail to reach an agreement, prices of

other vehicles would likely increase given the reduced competition in the market.

EV producer v’s disagreement payoff is:

dv,Sequential(p) = ∑
k∈Ωv,k ̸= j

(p̃k − τk −mcv
k)q̃k(p̃,φ),

where p̃k and p̃ are new equilibrium prices under negotiation disagreement (when vehicle j would

not be produced). The disagreement payoff for battery supplier b is analogously defined. The

components of the FOC Equation (4) are more complex in this model for two reasons. First,

calculating the disagreement payoff is more challenging and requires solving for new equilibrium
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prices for all downstream products for each bargaining pair. Second, the derivatives of both firms’

profits w.r.t. battery prices are more complex, as both parties internalize the impact of changing

battery prices on EV prices and sales. The relationship between upstream markups and downstream

markups is expressed in vector form in Equation (A2), with the derivation provided in Appendix

Section B.2.

Linear Pricing Another common approach to recovering upstream markups is to assume linear

pricing, also called double-marginalization or a ‘take-or-leave-it offer’ game. Battery suppliers post

battery prices, and EV producers purchase batteries at these posted prices and set EV prices that

include a markup over production costs. In our setting, linear pricing is a special case of sequential

bargaining where battery suppliers have full bargaining power λ b = 1. The upstream markup is:

mkmkmkb =−(Tb ⊗∆∆∆
q
τ)

−1 ·qqq (6)

where Tb is the ownership matrix, ⊗ denotes element-by-element multiplication, ∆∆∆
q
τ is a matrix

that collects the derivatives of vehicle sales q with respect to battery prices τ , and qqq is a vector of

all vehicles’ sales (see Appendix B.3).

Dynamics The presence of LBD can induce forward-looking behavior, where a battery supplier

reduces prices in the current period to accelerate experience accumulation and lower cost more

rapidly in future periods (Irwin and Klenow, 1994; Benkard, 2004), especially in the early stages

of learning. The models discussed above assume static price-setting behaviors (and use time and

battery supplier fixed effects to proxy the dynamic incentives). We now extend the static framework

to incorporate dynamic considerations (see Appendix B.4 for more details).

With dynamics, the gains from trade in the Nash product incorporate future payoffs:

NPj(τ j,τ− j) = (πv −dv)︸ ︷︷ ︸
v’ gains from trade

(1−λ b) (V b −Db)︸ ︷︷ ︸
b’ gains from trade

λ b

where battery suppliers are forward-looking due to the LBD incentives, V b represents the sum of

today’s profit and discounted future profits under an agreement, while Db captures today and future

profits when negotiation breaks down. The empirical literature on dynamic bargaining models is in

its early stages (Lee and Fong, 2013; Deng et al., 2024; Dorn, 2024), partly due to the complexities

of formulating disagreement payoffs and the impact of bargaining outcomes on future profits. To

make progress, we make two assumptions: a) battery suppliers and EV producers negotiate over

battery prices while EV producers set downstream markups; and b) they expect future markups to

remain at current levels.13 These assumptions capture the essence of LBD dynamic considerations,

13The assumption that EV producers choose markups implies full pass-through: reductions in battery prices are 100%
reflected in EV prices, achieving the largest demand expansion associated with battery price cuts. This assumption
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where upstream suppliers use low prices to stimulate downstream demand while abstracting away

modeling complications that would make the problem intractable (including downstream firms’

incentives to manipulate prices). With forward-looking battery suppliers, the upstream markups

are defined by Equation (A8) in Appendix B.4.

4 Estimation

The estimation closely follows Section 3 and proceeds in two steps. The first step estimates the

demand model and recovers consumer preference parameters. The second step estimates the supply

side and recovers the parameters that govern LBD as well as the bargaining weight.

4.1 Demand Estimation

Price Coefficient The price coefficient αi in Equation (1) is specified as

αi = α1 +
αc(i)

yi
+σpν

p
i ,

where price sensitivity is inversely related to individuals’ income yi. We divide countries into four

groups based on income per capita and allow the coefficient on income αc(i) to vary by country

groups.14 If αc(i) is positive, low-income households are more price sensitive than high-income

households. The dispersion of price sensitivity across consumers is captured by σp, and individual

unobserved heterogeneous preference ν
p
i is assumed to follow the standard log-normal distribution.

We fit the country-year income distribution using a log-normal distribution with parameters µct and

σct and estimate these parameters using the average household income, the top 10% income share,

and the bottom 50% income share for each country-year from the World Inequality Database.

Aggregate Moments To address price endogeneity due to unobserved product attributes ξ jct , we

use two sets of instruments. The first set includes the interaction terms of battery capacity with

a dummy variable for each of the top six battery suppliers. They capture the fact that batteries

with higher capacity are more costly to produce, and these costs vary across suppliers (Li et al.,

2021). The second set is the absolute difference between own attributes and average attributes of

rival vehicles (within the same car type and market-year) in terms of vehicle size, horsepower, and

driving range, following Gandhi and Houde (2019). In total, we use nine excluded instruments Z jct

maximizes battery suppliers’ dynamic incentives.
14The first group includes only China, which has the lowest income level. France, Germany, Japan, and Spain are in

the second group. The third group has Austria, Netherlands, Sweden, and the UK. The highest income group consists
of Canada, Norway, Switzerland, and the U.S.
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in addition to the exogenous attributes X jct to construct the aggregate (macro) moment conditions:

E[ξ jct |X jct ,Z jct ] = 0.

Micro-Moments We construct two types of micro-moments to facilitate the identification of pref-

erence parameters, particularly the price coefficients. The first type of micro-moments matches the

observed average income of households purchasing a specific EV model with the income predicted

by the demand model. The household surveys in China and the U.S. provide us with the average

household income for 50 popular EV models in China from 2016 to 2020 and 33 popular EV mod-

els in the U.S. in 2018, giving us a total of 83 micro-moments for Chinese and U.S. EV buyers.

The second type of micro-moments matches the observed share of EV buyers within specific in-

come brackets to the corresponding model-predicted share. We have data for five income groups in

Canada (2013), four in Germany (2013), six in Norway (2014), five in Japan (2015), three in Swe-

den (2015), and four in the Netherlands (2019). Since these income groups are mutually exclusive,

we drop one group per country, resulting in a total of 21 micro-moments for the second type. We

use two-step GMM and follow Conlon and Gortmaker (2023) to construct the variance-covariance

matrix and gradients of the aggregate moments and micro-moments.15

4.2 Battery Cost and LBD

Recall that vehicle prices are decomposed into four terms that consist of the marginal costs and

markups for both battery suppliers and EV producers, as defined in Equation (2):

p jct = mkv
jct︸ ︷︷ ︸

EV markup

+ mkb
jct︸ ︷︷ ︸

Battery markup

+ mcv
jct︸ ︷︷ ︸

Non-battery EV cost

+ mcb
jct︸ ︷︷ ︸

Battery cost

.

The vehicle markup mkv
jct is known after demand estimation, and the battery markup mkb

jct =
λ b

1−λ b mk
b
jct is known up to bargaining weight λ b following the discussions in Section 3.2. We now

describe how we separate out the battery cost mcb
jct from the non-battery cost mcc

jct and estimate

the cost parameters and λ b.

The marginal cost for non-battery components is specified as a function of vehicle attributes,

such as vehicle size and horsepower, and a rich set of fixed effects. We also include EV producers’

past experience to capture reductions in EV costs as a result of LBD in vehicle assembly.

The marginal cost of producing batteries, the heart of this exercise, is specified as the product

of battery capacity in kWh (denoted as BKb jct) and the cost associated with producing each kWh:16

15These micro-moments are obtained from the following studies: Canada from Axsen, Bailey, and Castro (2015);
Germany from Plötz et al. (2017); Norway from Bjerkan, Nørbech, and Nordtømme (2016); Sweden from Vassileva
and Campillo (2017); Netherlands from Meijssen (2019); and Japan from Okada, Tamaki, and Managi (2019).

16We follow the industry convention that reports battery costs in unit of kWh (Bloomberg NEF, 2023).
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mcb
jct = BKb jct

(
γ0Ebt

γE +CHb jctγ1 +PKbtγ2 +η ∗ t︸ ︷︷ ︸
cost per kWh

)
. (7)

Battery supplier’s experience Ebt is defined as the past cumulative production and measured in units

of all vehicle models sold that source batteries from supplier b:

Ebt = ∑
s<t

∑
c

∑
j∈I {Ibcs=1}

q jcs,

where q jcs is the sales of vehicle j in country c and year s, and I {Ibcs = 1} denotes the set of

vehicle models in country c and year s that source batteries from supplier b. The key parameter

of interest is the learning coefficient γE , which determines the rate at which the unit cost (i.e., per

kWh) of battery manufacturing decreases when production experience doubles.17 The baseline cost

without learning, or the initial production cost, is captured by γ0.

In addition to supplier experience, we also control for battery chemical type CHb jct (e.g., NMC

or LFP), the battery plant’s capacity PKbt in GWh that reflects economies of scale,18 and input

costs. Given the significant changes in production technology over the past decade (advancements

in battery size and efficiency), we use a time trend η ∗ t to control for industry-wide technological

progress over time. As pointed out by Thompson (2001), failure to control for factors that influence

unit production costs could inflate LBD estimates. We demonstrate in Section 5 that the LBD

estimate reduces by half once we account for technological advancements, changes in chemistry

type, economies of scale, and accumulated experience in EV assembly (a shifter in EV producer’s

marginal cost).

Combining Equations (2), (5) (or (A2), (6), and (A8) for alternative supply-side models), and

(7), the LBD estimating equation is defined as follows:

p jct −mkv
jct =

λ b

1−λ b mk
b
jct +BKb jct

(
γ0Ebt

γE +CHb jctγ1 +PKbtγ2 +η ∗ t︸ ︷︷ ︸
Battery cost per kWh

)
+xv jctγγγv +fixed effects+ω jct , (8)

where xv jct reflects marginal costs of producing a vehicle’s non-battery components (e.g., those

depending on vehicle size and horsepower, as well as EV producer experience). The set of fixed

effects includes country, EV brand (e.g. Tesla), battery supplier (e.g. LG), and year fixed effects,

capturing unobserved cost shocks in different dimensions. For example, country fixed effects con-

trol for unobserved cost differentials at the country level, such as supply chain advantages in China

17The learning rate, or the Spence coefficient, is 1−2γE , which can be interpreted as the percentage cost reduction as
a result of doubling experience.

18As plant size grows, the marginal cost of producing a battery may decrease due to the economies of scale. For multi-
plant firms, we use the median capacity across all plants. The LBD estimates are similar whether we use the median,
mean, maximum capacity, or the sum of capacity across all plants.
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vs. other countries. The battery-supplier and year fixed effects capture supplier reputation and other

industry-level dynamics. The residual ω jct captures the remainder of unobserved cost shocks. Dif-

ferent from the standard supply-side analyses (Berry, Levinsohn, and Pakes, 1995), ω jct includes

the unobserved cost shocks to both EV production and battery production (the latter of which is

included as part of the battery prices that EV producers pay to battery suppliers).

4.3 Empirical Challenges

There are three challenges in estimating Equation (8). First, battery firms’ cumulative experience

is likely to be endogenous. For example, past sales q jcs could be correlated with serially correlated

cost shocks ω jct that capture the unobserved production efficiency of battery supplier b. Addition-

ally, the supply network that partially determines past sales could be endogenous in that productive

and low-cost battery suppliers might supply more EV models.

To address the endogeneity of experience, we use predicted past experience driven by exoge-

nous variations as an IV in the spirit of Gowrisankaran, Ho, and Town (2006):

IVbt = ∑
s<t

∑
c

∑
j

P̂r jbcs(zzz jbcs)q̂ jcs(X jcs,φ jcs), (9)

where IVbt , the instrument for past cumulative experience Ebt , is the sum of predicted past sales

and consists of two sets of predicted outcomes. To address the concern that the observed supplier

network is potentially endogenous, we use a discrete choice model of supplier choices to predict the

probability that vehicle model j in country c and year s sources batteries from supplier b, P̂r jbcs.

The exogenous shifters zzz jbcs include home bias (to capture the fact that EV producers are more

likely to source from domestic battery suppliers), China’s White List policy, EV attributes, battery

supplier characteristics that are predetermined in the initial year that we observe them (firm age,

average battery size, initial battery chemistry etc.), and the EV producer - battery supplier network

in the initial year. These exogenous variables are unlikely to be correlated with unobserved cost

shocks ω jct in Equation (8). Appendix A.3 provides more details.

To address the endogeneity in past sales, we use q̂ jcs(X jcs,φ jcs), the predicted sales that are

based on the demand model in Equation (1). It depends on vehicle attributes X jcs and EV subsidies

φ jcs, the latter of which exhibits rich variations across countries, models, and time. The subsidies

serve as powerful instruments because they greatly affect demand for EVs and, hence, the sales of

batteries by different suppliers. For example, a battery supplier that sells batteries to EV models

eligible for more generous EV subsidies will gain experience more quickly.

The key identification assumption is that China’s whitelist policy and variations in EV subsidies

across countries are uncorrelated with vehicle and battery costs shocks ω jct . This is likely to hold
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in our setting. For example, the notched subsidy design based on the driving range in China lends

to an RD-type variation in that the amount of subsidy changes discretely at the range cutoffs, but

unobserved vehicle and battery costs are unlikely to change discretely at these cutoffs (Figure A3).

The second challenge in estimating Equation (8) is that the battery firm’s markup mk
b
jct might be

endogenous and could be correlated with cost shocks ω jct that capture the unobserved production

efficiency of battery supplier b. This is because firms’ optimal pricing strategies and equilibrium

markups depend on their costs. We follow the same strategy as above and construct an IV of pre-

dicted markups using only exogenous variation in subsidies, whitelist policy, and vehicle attributes.

To do so, we first regress EV prices on observed attributes, subsidies, and fixed effects to obtain

predicted prices for each vehicle model. We then use predicted prices to re-calculate market shares,

vehicle markups, and battery markups. By construction, the predicted battery markups are exoge-

nous to cost shocks ω jct and serve as a valid IV. Note that the bargaining parameter λ b is identified

from changes in vehicle prices that result from exogenous shifts to battery suppliers’ markups as

a result of changes in their bargaining leverage. For example, China’s whitelist policy enhanced

the bargaining position of Chinese battery suppliers relative to EV makers. The degree to which

this shift affects vehicle prices is informative of λ b. If λ b = 0 (i.e., EV producers make take-it-or-

leave-it offers), batteries are supplied at cost, and changes in upstream bargaining leverage would

have no effect on EV prices.

The third challenge is that EV producer’s past experience, a control in xv jct in Equation (8),

is also endogenous and correlated with ω jct . We generate predicted EV producer experience in a

similar fashion to how we generate predicted battery supplier experience and use it as an IV for EV

experience.

5 Estimation Results

5.1 Demand Results

Table 2 reports parameter estimates for EV demand. There are a total of 4,556 observations. All

columns include country, brand, and year fixed effects. The first column shows results from a

simple multinomial logit model using OLS (i.e., Berry-logit). The second column instruments for

vehicle price using the two sets of IVs discussed earlier: the interactions between battery supplier

dummies and battery capacity to capture the cost variation in battery production and IVs based

on observed vehicle attributes. As common in the demand literature, the OLS estimate on vehicle

price in column (1) is much smaller in magnitude than the 2SLS estimate in column (2) due to

the positive correlation between unobserved product attributes and prices. The OLS estimate on
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vehicle volume (i.e., length by width by height) is counter-intuitive. All coefficient estimates from

2SLS are intuitively signed: consumers dislike higher prices but prefer larger sizes and horsepower.

Consumers prefer a longer driving range, but the range preference is much weaker for PHEVs.

Column (3) reports results from our preferred specification, the random coefficient model with

heterogeneous preferences. As in Column (2), all parameter estimates have the expected sign.

High-income households are less price sensitive, and there is significant heterogeneity in how in-

come correlates with price sensitivity across country groups. We allow random coefficients on the

constant term, vehicle attributes, and price to capture preference heterogeneity. All the random co-

efficient estimates are estimated precisely. There are significant variations in price sensitivity even

after controlling for income (the random coefficient on price is sizeable).

Panel (a) of Figure 2 presents the histogram of price elasticities for all EV models in our sam-

ple.19 The average price elasticity is -3.51, with a standard deviation of 1.53. These estimates are

consistent with findings from the existing literature on EV demand (Li et al., 2017; Li, 2018; Xing,

Leard, and Li, 2021; Muehlegger and Rapson, 2022; Springel, 2019). Panel (b) depicts the semi-

elasticities against post-subsidy vehicle prices by country group, where the semi-elasticity is the

percentage change in sales for a $1,000 reduction in a vehicle’s post-subsidy price. The percent-

age increase in sales is greater for cheaper vehicles, indicating higher demand elasticity for these

models, consistent with the observation that their buyers typically have lower incomes. China has

a greater number of EVs with post-subsidy prices below $40,000 than all other country groups.

It also exhibits the highest sales-weighted semi-elasticity (in absolute value) at 10.5%, consistent

with Chinese consumers having the lowest average income among the 13 countries studied. The

sales-weighted semi-elasticity for the other three country groups ranges from 6.5% to 7.4%.

5.2 Supply Side Results

IVs for Experiences and Markups As explained in Section 4.3, we use exogenous variables,

such as changes in EV subsidies and China’s whitelist policy, along with the demand model and

a supplier choice model, to construct the predicted experience for each battery supplier and year.

Similarly, we exploit exogenous variations in prices and government policies to generate predicted

markups for battery suppliers and predicted EV producer experience. Figure A5 presents evidence

that these predicted variables are strong IVs: there is a strong positive correlation between these

instruments and their endogenous counterparts after partialing out vehicle attributes and a rich set

of country, brand, and year fixed effects.

19The demand elasticity is less than one (in absolute value) for 70 out of 4,556 observations. Given the multi-product
nature of auto firms, only nine observations exhibit negative marginal costs, which we keep in the estimation sample.
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Cost Estimates with Simultaneous Bargaining We first present cost estimates and magnitude

of LBD for our preferred supply-side model (bargaining with simultaneous contract and pricing),

followed by results from alternative supply-side models.

Table 3 presents the GMM estimates for Equation (8). We categorize the parameters into four

groups: (1) those linking battery production costs to a function of learning-by-doing (LBD) and

battery attributes, (2) those that relate vehicle production costs (excluding batteries) as a function

of vehicle attributes, (3) the bargaining weight, and (4) fixed effects to control for unobserved cost

shocks in both battery and vehicle production.20 The experience and markups of battery suppliers

and the experience of EV producers are instrumented in all columns as discussed above.

Column (1) controls only the experience of battery suppliers, vehicle attributes, and fixed ef-

fects. The learning parameter γE is estimated to be -0.203, suggesting a learning rate of 1 −
2−0.203 = 13%. The coefficient γ0 represents the baseline cost, which is the battery production

cost when a firm begins production (with experience set to 1). The γ0 estimate suggests a baseline

cost of $1,095 per kWh in 2013.

Column (2) incorporates industry-wide technological progress in battery production. The esti-

mate on time trend indicates a $24 reduction in battery cost per kWh each year. At the same time,

the learning parameter reduces from -0.203 to -0.135, suggesting that industry-level technology

progress could confound LBD estimates. Column (3) further controls for economies of scale by

including plant capacity, while Column (4) adds the experience of EV producers to account for

potential learning in EV assembly. Column (4) is our preferred specification with all the relevant

controls and is used for subsequent counterfactual analyses in Section 6. Including these additional

controls in Column (4) results in several notable changes in the estimation results.

First, the learning coefficient decreases from 0.203 in Column (1) to 0.113 in Column (4), im-

plying a learning rate (the Spence coefficient) of 1− 2−0.113 = 7.5%. That is, the marginal cost

of producing batteries is expected to reduce by 7.5% on average with every doubling of produc-

tion experience. Our preferred estimate in Column (4) is much lower than the 20-28% estimates

reported in industry studies using aggregate data (Ziegler and Trancik, 2021), which often do not

adequately control for industry-wide technology progress and other cost shocks. The learning rate

in well-known economic studies varies between 8-30%. For example, it is estimated at 20% in the

semiconductor industry from 1974-1992 (Irwin and Klenow, 1994) as well as in the construction

of Liberty ships during World War II (Thompson, 2001), at approximately 30% in aircraft man-

ufacturing from 1970-1984 (Benkard, 2000), between 14-29% in wind turbine production from

2000 to 2019 (Covert and Sweeney, 2022), and around 5-8% in the global semiconductor sector

20We cannot separately identify the level of battery cost from that of vehicle cost since some of these fixed effects could
affect both cost measures.
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from 2004-2015 (Goldberg et al., 2024). There appears to be considerable variation in learning rate

estimates across the studies, driven by multiple factors such as the nature of the industry (capital-

intensive versus labor-intensive), knowledge stock depreciation (or organizational forgetting due

to employee turnover), as well as whether other important factors are controlled, such as industry-

wide technology progress and economies of scale when estimating the learning curves (Argote and

Epple, 1990; Thompson, 2012).

Second, the time trend estimates indicate that battery costs decrease by $32 per kWh annually,

or approximately 4% of the baseline cost ($858 per kWh in Column (4)). This implies substantial

technological progress in EV battery production during our data period. Indeed, as we demonstrate

below, technological progress accounts for 39.9% of the observed reductions in battery costs. In

addition, the γ0 estimate falls from $1,095 per kWh to $858 per kWh, closer to the reported industry

average. The coefficient estimate on plant capacity in Column (4) is intuitively signed and precisely

estimated, suggesting economies of scale of about 5.4% (=0.078 in Column (4) × ln(2)).

Third, the coefficient estimate for EV experience suggests that the unit cost of EV production

decreases by $1000∗ ln(2)∗(−0.997) = $691 for every doubling of EV manufacturing experience.

At this rate, the cumulative experience of EV manufacturers contributed to a reduction of about

$3,000 (or 5%) of EV prices.

Lastly, the estimate for battery suppliers’ bargaining weight drops from 0.503 in Column (1)

to 0.275 in Column (4). Equal bargaining weight between battery suppliers and EV producers

is unlikely, given that batteries only account for one-third of the total cost of EV production. In

addition, a bargaining weight of 0.5 would imply upstream markups of $180 per kWh, which is

implausibly high relative to Bloomberg’s battery pack prices of $200 per kWh toward the end of

the sample period. In contrast, a bargaining weight of 0.275 in Column (4) suggests upstream

markups of approximately $117/kWh, a plausible estimate relative to the battery pack prices. The

magnitude is also consistent with the markups reported by CATL.21

Magnitude of LBD To better understand the magnitude of LBD and its contribution to the overall

reduction in battery prices over the past decade, we simulate sales-weighted predicted battery prices

from 2014 to 2020 under different scenarios, as shown in Figure 3. The bottom line represents the

battery price index from Bloomberg NEF (2023). The top line shows the predicted prices based

solely on the time trend (an annual reduction of $32 per kWh), which captures the industry-wide

technological advancements. Overall, technological progress accounted for 39.9% of the battery

price reduction. The second line from the top reflects the combined price reductions due to both

LBD and the time trend. The difference between the top two lines indicates that LBD contributed

21CATL’s average reported markup (between 2015 and 2020) was $83 per kWh (CATL’s Annual Reports).
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to 35.5% of the reduction in battery price from 2014 to 2020. The third line represents the model-

predicted battery prices, which also include the effects of growing economies of scale and changes

in battery chemistry and input costs.22

To illustrate how LBD has contributed to changes in battery prices across the three major pro-

duction countries, Panel (b) of Figure 3 reports price reductions driven by cumulative production

experience for the leading battery suppliers: BYD and CATL in China, Panasonic and AESC in

Japan, and LG and Samsung in South Korea. In 2014, the average battery cost was $750 per kWh

among top Chinese suppliers (γ0Ebt,China
γE ), compared to $650 per kWh among the leading South

Korean suppliers and $550 per kWh among the top Japanese suppliers. By 2018, Chinese suppliers

had caught up with their South Korean counterparts, and by 2020, they had also closed the gap

with Japanese suppliers. These cost estimates align closely with the free-on-board battery price

by country-of-origin reported in UN Comtrade, as shown in Panel (d) of Appendix Figure A4. By

2020, Chinese battery exports were the least expensive among all major exporting countries.

Cost Estimates from Alternative Supply-side Models We begin by examining whether the

learning rate estimate is sensitive to the bargaining parameter. Table 4 reports cost estimates when

the battery supplier’s bargaining weight λ varies from 0 to 0.5, using the same supply-side model

as in Table 3. Values greater than 0.5 are excluded, as they would imply negative marginal costs for

battery production. The LBD estimates remain similar across different λ values. Intuitively, while

bargaining weights affect the level of predicted battery prices (higher λ leads to greater markups

for suppliers and higher battery prices), LBD is determined by the relationship between changes in

battery prices and cumulative experience. Although the battery price level is affected by bargaining

parameters (and supply-side assumptions in general), its slope w.r.t. production experience remains

robust and stable across the specifications considered.

As an alternative to the simultaneous bargaining model, we also estimate cost parameters as-

suming bargaining is sequential: EV makers and battery suppliers first negotiate over battery prices,

then EV makers set downstream prices, taking as given the negotiated battery prices. If there is dis-

agreement in upstream negotiations, downstream EV suppliers re-adjust their prices for all EV

models. Appendix Table A3 presents cost estimates while varying the battery supplier’s bargaining

weight λ b. The linear pricing model (double-marginalization) is a special case of sequential bar-

gaining with λ b = 1 and is presented in the last column. The LBD estimates are very similar to our

baseline estimates and remain robust to different values of λ .

Table A4 presents the learning estimates γE when battery suppliers are forward-looking at dif-

22Since we cannot separately identify the level of battery price and the level of vehicle cost, we calibrate the battery
price in the base year (2014) to match the Bloomberg price index for that year. Our model prediction aligns well with
the overall observed price decline.
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ferent values of λ . At one extreme, when λ = 0 (Column (1)), battery suppliers earn zero markups,

and thus no dynamic markdown incentive exists. At the other extreme, with λ = 1 (Column (5)),

battery suppliers capture the maximum surplus possible in negotiations, providing the strongest in-

centives to lower current battery prices to accelerate LBD. The estimates across columns align with

this intuition: γE is lowest (in absolute value) with λ = 0 and highest when dynamic incentives

are strongest. Nonetheless, the differences are modest and γE varies from -0.099 with λ = 0 to

-0.120 with λ = 1. This is because dynamic incentives dissipate rapidly after a few years for all

learning rates we have obtained.23 We conclude that ignoring dynamics in our setting is unlikely to

introduce significant bias into the learning estimates.

Given the stability of the LBD estimate across various supply-side assumptions, all subsequent

counterfactual simulations are conducted based on our preferred specification in Column (4) of

Table 3.

5.3 Robustness Checks

Scope of LBD Our analysis thus far has focused on internal LBD, i.e., learning that occurs within

a firm. Historically, many policies that target “infant industries” (to which the EV and EV battery

sectors belong) have been motivated by the potential for external learning: experience accumulated

by local suppliers could generate spillover benefits to other suppliers within the same industry and

country (Melitz, 2005). The effects of many current policies, such as the local content requirements

for EV subsidies under the IRA, critically hinge on the scope of learning. Therefore, understanding

the extent of these learning spillovers has significant policy implications. However, identifying the

full scope of such spillovers poses additional empirical challenges and requires additional variations

and exogenous shocks to assess their impact properly.

We first explore learning spillovers across firms within the same country. We assume that the

effective experience of a battery supplier is the sum of its own experience and a fraction (captured

by a parameter θ ) of the experience of rival firms in the same country. The parameter θ measures

the completeness of spillover. If θ = 1, there is complete spillover and learning from rivals’ ex-

perience is as effective as learning from one’s own experience, whereas θ = 0 implies no learning

23Consider a hypothetical scenario where supplier b reduces battery prices by 30% in year t. This translates to a 10%
reduction in prices of EV models (battery is 30% of the EV price) that source from b and a 35% increase in sales
in year t at our estimated demand elasticity. Assuming supplier b has no prior production experience (so the effect
of LBD is strongest), the 35% increase in sales translates to a 35% increase in cumulative experience. At a learning
rate of 7.5%, battery costs in year t +1 would drop by 2.3%. Suppose all cost savings are passed through to battery
prices and fully reflected in EV prices, this would lead to a 1% reduction in EV prices and a 3% sales increase in
year t +1. However, this smaller sales increase results in a marginal gain in experience in year t +2 and a negligible
cost reduction in all future years.
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spillover from rival firms. We instrument the effective experience variable using the predicted own

experience and predicted rival experience based on exogenous variations as shown in Equation (9).

Appendix Table A5 presents the estimation results for learning spillovers across firms. The

θ estimate is 0.044, indicating that learning from one unit of rival experience is equivalent to

only 4.4% of the learning derived from own experience. The estimate is imprecise due to limited

variation in rival experience across firms, especially for small battery suppliers. At θ = 0.044,

learning from rivals constitutes a small share of overall learning for the top six leading battery

suppliers, but it accounts for 56% of the overall learning for other firms by the end of the sample

period.

We also investigate differential learning across chemistry types within the same firm. We mea-

sure the experience variable by chemistry type and define effective experience as the sum of a firm’s

own experience in producing batteries of a given chemistry type and a fraction (θ ) of its experi-

ence in producing batteries of other chemistry types. The θ parameter is imprecisely estimated,

as more than 80% of the battery suppliers produce only one chemistry type, leading to limited

variation across firms. Finally, we have explored global LBD by allowing learning spillover across

countries. However, the global LBD is highly correlated with the time trend and cannot be reliably

estimated.

Patents and Innovation Our baseline specification includes a time trend in battery costs to ac-

count for industry-level technological progress that happens concurrently with LBD. To account

for the role of firm-level innovation and know-how, we include the logarithm of the cumulative

number of patents filed by each battery supplier as a proxy for the firm’s knowledge stock (Table

A6). We instrument this variable using the cumulative total subsidies received by the battery sup-

plier following Barwick et al. (2024). The coefficient of firm patents is negative and significant,

consistent with firm innovations reducing costs. Interestingly, the time trend is no longer negative

once patents are controlled for. The learning parameter γE remains very similar to the baseline

estimate but is noisily estimated due to challenges in finding valid instruments that can separately

identify learning effects from innovation.

6 Counterfactual Analyses

We now evaluate the role of LBD in stimulating EV demand and the extent of externality that it

generates. We also quantify the welfare implications of two prominent government policies with

and without LBD.
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6.1 The Effect of LBD and Externalities

Effect of LBD To investigate the role of LBD and its impact on EV adoption, we simulate ag-

gregate EV sales for the top 13 EV countries during 2013-2020 under four scenarios, as illustrated

in Figure 4. These scenarios, represented by the four lines from bottom to top, are: (1) a baseline

with no consumer subsidies and no LBD; (2) consumer subsidies without LBD; (3) LBD without

consumer subsidies; and (4) both consumer subsidies and LBD.

LBD creates a positive “feedback loop:” subsidies boost EV sales, which enhances battery

production experience, leading to lower battery costs and EV prices. These price reductions, in

turn, further accelerate EV adoption, amplifying the direct effects of consumer subsidies and other

supportive policies. Specifically, compared to the baseline scenario, consumer subsidies alone

increased cumulative sales by 29.9% (1.01 million units) during 2013-2020. Absent any subsidies,

cost reductions driven by LBD alone resulted in a 78.3% increase in global EV sales (2.65 million

units) during the same period. When both consumer subsidies and LBD were in effect, global

EV sales surged by 170% (5.75 million units) relative to the baseline. This combined “snowball”

effect is nearly 60% larger than the sum of their individual contributions, underscoring the strong

complementarity between LBD and consumer subsidies.

Externalities Our analysis in Section 5.3 indicates that while the spillovers to other firms in the

same country are positive, the estimates are statistically insignificant. If LBD is entirely internal to

a firm, can government interventions be justified, apart from environmental benefits and technolog-

ical spillover to other sectors?24 To evaluate this empirically, we conduct a counterfactual analysis

where we increase battery suppliers’ experience (and hence LBD) and examine what happens to

downstream firms and consumers, both domestically and globally.

Table A7 presents welfare changes resulting from a one-time increase in the experience of

CATL and Panasonic in 2013. This shock reduces upstream firms’ (CATL and Panasonic) future

production costs, leading to lower input costs and higher profit for downstream firms and ultimately

benefiting end-users (consumers) when some of the cost savings are passed through. We simulate

the industry equilibrium from 2013 to 2020 using the model outlined in Section 3. For ease of

comparison, we normalize the increase in battery suppliers’ profit to 1 (so that all numbers are

relative to this benchmark). The first three columns report welfare changes for the home country

(China for CATL), the rest of the world, and globally when CATL’s experience increases. The next

three columns present welfare changes associated with Panasonic’s increased experience. Notably,

24LBD without spillovers is a special case of the model considered in Dasgupta and Stiglitz (1988), which argues that
a) LBD often leads to significant market power and high concentration, and b) import subsidies might be desirable
when domestic demand for foreign goods is high and domestic production is too costly.
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CATL captures only 13.5% of the global surplus generated by its increased LBD, while Panasonic

captures 14.7%. In addition, the distribution of welfare gains varies significantly between open and

closed economies. China captures the entirety of the global welfare gains with its largely closed

supply chain. In contrast, Japan captures only 58% of the global welfare gains resulting from Pana-

sonic’s cost reductions, with a significant portion of the surplus accruing to foreign downstream

firms and consumers.

These discussions highlight that upstream LBD generates substantial externalities for down-

stream firms and consumers, with these benefits crossing country borders through international

supply chains. Such externalities underpin the large welfare impacts of government interventions,

as documented below.25

Algorithm for Counterfactual Analyses Next, we conduct counterfactual simulations to exam-

ine two types of prominent government policies: (1) consumer subsidies and (2) domestic content

requirements, such as China’s Whitelist policy. As the latter policy is likely to shift battery sales

from foreign to domestic suppliers, we develop a network formation model in Appendix C. The

model features the Whitelist policy and accounts for the higher likelihood of more experienced

battery firms supplying a given EV model.26 For each counterfactual analysis, we perform 100

simulations and report the average outcomes. In each simulation, we 1) construct a supply net-

work based on the network formation model in Appendix C, 2) solve for battery prices, vehicle

prices, and EV sales, 3) update battery supplier experience and production costs, and (4) repeat

steps (1)-(3) for all subsequent years in the sample.

6.2 Consumer subsidies

Our first set of counterfactuals examines the impact of consumer subsidies in China, Europe, and

the U.S. (including Canada) on EV adoption and social welfare from 2013 to 2020. We do not

study Japanese and South Korean subsidies due to the small size of their EV markets. The top row

in each panel reports welfare changes by region, measured as the sum of consumer surplus and

firm profits minus subsidy expenditures when relevant. The first four columns present the welfare

effects for China, Europe, Japan and South Korea, and the U.S., respectively, while the last column,

25While not the focus of this paper, LBD also creates (intertemporal) complementarities among downstream products
that share a common supplier. Positive demand shocks for one product increase the upstream supplier’s LBD, leading
to lower future prices for rival products with the same supplier and boosting demand for those rival products.

26Key controls of this discrete-choice model include: a dummy for China’s whitelist policy, battery suppliers’ experi-
ence, a home bias dummy, dummies for vertically integrated supplier-OEM pairs, the subsidy rate offered by country
c at time t for a given EV model, initial attributes of EV suppliers, and the lagged network structure.
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titled “Global,” aggregates welfare changes across all regions.27

Panel (a) of Table 5 highlights the impact of U.S. subsidies while holding fixed subsidies in

other regions (as well as the whitelist policy in China). The U.S. spent $13.10 billion in subsi-

dies, generated $16.47 billion in global welfare gains, and captured 49% of the global gains. The

interaction of subsidies with LBD significantly lowered battery costs for U.S. (and Canadian) EV

producers and reduced vehicle prices for domestic consumers. This led to an increase of 0.75

million EV sales in these countries.

Interestingly, Japan and South Korea benefitted most outside North America, as U.S. EV pro-

duction heavily relies on batteries supplied by these countries. Similar to their counterparts in

the U.S., EV producers and consumers in these countries also benefitted from lower battery costs

driven by accelerated learning and cost reductions. Altogether, battery suppliers in Japan and South

Korea captured 28% of global welfare gains, while EV producers and consumers in these countries

captured another 6%, resulting in these two countries capturing 34% of global welfare gains. Eu-

rope also experienced significant gains; in contrast, China accounted for only 3% of the global

total. This modest share reflects China’s limited EV trade, minimal battery exports (in contrast to

Japan and South Korea), and limited battery imports during the sample period. The only group of

players that were hurt by U.S.’ subsidies are Chinese battery suppliers because their rivals in Japan

and Korea became more competitive through enhanced experience and stole their market shares,

especially in the Chinese EV battery market.28

Panel (b) shows that European subsidies had broadly similar effects to those of U.S. subsidies,

generating substantial welfare gains for consumers and EV producers. Japan and South Korea ben-

efitted the most, as EVs sold in Europe also primarily sourced batteries from these two countries.

However, there are notable differences: European governments invested $16.44 billion in subsidies

but achieved only $11.60 billion in global welfare gains, of which the EU captured just 26%. This

lower capture rate reflects Europe’s higher import share of EVs. Additionally, the global return on

EU subsidies (measured as net welfare gains per dollar spent) was lower than that of the U.S. sub-

sidies, partly due to the common use of uniform subsidies in Europe, which proved less effective

in generating consumer surplus compared to the battery-capacity-based subsidies employed in the

U.S. (Barwick, Kwon, and Li, 2024).

Panel (c) examines the impact of Chinese subsidies totaling $22.27 billion. These subsidies

generated $32.27 billion in global welfare gains, with 92.6% captured domestically. Although

27Profits for battery suppliers and EV producers are allocated to their headquarters country. Results are qualitatively
similar if we allocate EV producers’ profits to the EV production country.

28Table A9 reports the welfare impacts including the environmental impacts of EV adoption as described in Appendix
C.3. The environmental benefits are of the same magnitude as non-environmental benefits from the subsidies.
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the subsidies produced some spillovers to other regions, these were small relative to those from

U.S. and European subsidies due to China’s limited EV imports and its domestic sourcing of EV

batteries. EV sales in China increased by over 2.7 million units during 2013–2020, driven by

generous subsidies and the more elastic demand among Chinese consumers.

Table 5 highlights several important findings. First, consumer subsidies generate welfare gains

that are magnified by LBD and spillovers to other countries through the linkage in battery sup-

ply networks. Table A10 confirms that both the welfare gains and the cross-country spillovers are

several factors smaller in the absence of LBD. Second, the extent of cross-country spillovers cru-

cially hinges on the overlap of the battery supply networks. Consumer subsidies in China generated

much smaller spillovers in other regions because EVs sold in China mainly rely on domestic bat-

tery producers. The strong spillovers between the US and the EU arise because EVs sold in these

two regions use the same battery suppliers from Japan and South Korea. In contrast, the spillovers

between the US or European subsidies to China are nearly non-existent because of the limited over-

lap in battery suppliers between EV producers in the US and Europe and those in China. Finally,

results in Table 5 echo findings in Section 6.1 and illustrate that privately chosen experience level

(and the degree of LBD) is unlikely to be socially optimal. Government subsidies have the potential

to address the under-provision of LBD.29

6.3 Domestic content requirements

Whitelist To explore the impact of domestic content requirements, we begin by analyzing China’s

whitelist policy, introduced midway through our sample period. We compare outcomes with and

without the whitelist to assess: (a) the extent to which the policy propelled top Chinese battery

suppliers to global industry leadership, and b) its welfare implications for domestic and foreign

firms and consumers, which depend on cost differentials between approved suppliers and the others.

Figure A6 shows that the Whitelist policy significantly benefited Chinese battery suppliers,

with their sales increasing by 24% between 2016 and 2020. The policy successfully accelerated

experience accumulation among Chinese battery suppliers, particularly CATL and BYD, enhancing

their global competitiveness. This drove their market share growth even after the policy ended

(Figure A4). However, these gains came at the expense of non-Chinese battery suppliers, whose

sales declined by 14% relative to a no-whitelist scenario.

Panel (a) of Table 6 presents the impact of the Whitelist policy while holding the subsidies

fixed. The policy increased the profit of Chinese battery suppliers by over $3.17 billion but hurt

29In addition to the externalities due to LBD as discussed in Section 6.1, subsidies generate welfare gains by mitigating
deadweight losses from market power distortions (as shown in Barwick, Kwon, and Li (2024).
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domestic consumers by $0.80 billion. While the overall welfare impact in China is positive, the

policy had negative spillovers abroad. Japanese and South Korean battery suppliers faced reduced

demand and profit losses, which slowed down their LBD. This slowdown in LBD negatively af-

fected downstream EV producers in Europe and the U.S. that rely on these suppliers, leading to

slower EV adoption in those regions. Collectively, the EU, Japan and South Korea, and the U.S.

and Canada experienced a $5.88 billion welfare loss.

The effect on Chinese domestic EV producers was nuanced. In the early years of the whitelist

policy, some Chinese EV producers were forced to switch from initially lower-cost foreign sup-

pliers to higher-cost domestic ones, leading to profit declines in 2016 and 2017 relative to the

no-whitelist scenario. However, the policy facilitated sales concentration among two dominant do-

mestic suppliers, enabling faster LBD accumulation. As shown in Panel (b) of Figure 3, China’s

top suppliers closed the cost gap with South Korean suppliers by 2018 and matched their Japanese

counterparts by 2020. These significant cost reductions ultimately benefited Chinese EV producers,

whose profits increased in 2018, 2019, and 2020 relative to the no-whitelist scenario. Over time,

the policy’s impact shifted from negative to positive.

Panel (b) of Table 6 presents the combined effect of the Whitelist policy and consumer subsidies

in China. While the Whitelist slightly increased China’s overall welfare gains from consumer

subsidies, it reduced and even reversed the positive cross-country spillovers of these subsidies,

particularly for Japan and South Korea, the U.S., and Canada.

These results indicate that Chinese battery suppliers were the primary beneficiaries of the

whitelist policy. While Chinese EV producers eventually gained (with a modest profit increase

over the entire period), the policy had adverse effects on all other stakeholders. This highlights

the tradeoffs created by protective policies that distort market forces. Consistent with our simula-

tion results, the policy was discontinued in late 2019 following opposition from EV producers and

non-Chinese battery producers.

Timing of Protective Policies China’s Whitelist was introduced at a crucial (and opportune)

moment: the learning curve for battery production was steep, and China became the largest EV and

EV battery market in 2015. We examine the effect of implementing the Whitelist four years later,

from 2021 to 2024, when most battery cost reductions had already taken place. We assumed the

global market structure and subsidy rates in future years stayed as they were in 2020, as discussed

in Appendix C. Table 7 summarizes the results. As expected, the negative impact on other countries

becomes much smaller. By 2021, the gap in production experience between (foreign) leaders and

(Chinese) followers would have been much wider than that in 2016. The economic benefits from

LBD are also smaller, as battery costs had fallen below $200 per kWh compared to $600-$800 in
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2014. While Chinese battery suppliers still gained, their profit increases are an order of magnitude

smaller, given the large cost advantages held by Japan and Korea.30 Chinese consumers and EV

firms experienced greater losses. As a result, the counterfactual whitelist policy is also detrimental

to China.

IRA The IRA of the Biden administration put into place local content requirements for EV bat-

teries as part of the eligibility rules for consumer subsidies. While a policy simulation of the

local content requirements under IRA is out of the sample of our study, our analysis suggests that

the policy will likely generate (negative) welfare impacts across consumers, battery suppliers, and

EV producers in the US that are qualitatively similar to those observed under the counterfactual

whitelist policy (2021-2024) in China. The switch to batteries produced in North America from

cheaper batteries made elsewhere will likely lead to losses in consumer surplus, reduced profit

among EV producers, as well as slower EV adoption in the U.S. and elsewhere.

Accounting for LBD in Policy Analysis To illustrate the importance of accounting for LBD in

policy analysis, we simulate the impacts of Chinese consumer subsidies and the Whitelist policy

without LBD. Table 8 shows that welfare gains and positive cross-country spillovers from subsidies

drop to about 20% of those with LBD, while negative spillovers from the Whitelist policy are also

significantly reduced. These results underscore the importance of accounting for LBD in evaluating

the cost-effectiveness and broad impacts of EV policies.

7 Conclusion

This paper, to our knowledge, represents the first attempt to causally quantify learning-by-doing

(LBD) in the global EV battery market and to examine the implications of LBD for EV purchase

subsidies and local content requirements on batteries. The learning rate is estimated to be 7.5%

after controlling for industry-wide technological progress, economies of scale, input costs, and

LBD in EV assembly. LBD in battery production accounts for 35.5% of the overall battery cost

reduction during 2014–2020. The feedback loop from LBD amplified the effects of EV subsidies

and local content requirements on EV adoption and social welfare by severalfold. Upstream battery

suppliers capture a small fraction of the benefits generated by LBD to downstream producers and

consumers, highlighting the potential role of government interventions.

In terms of policy impacts, EV subsidies in one country generate spillover benefits for other

countries, with the extent of these spillovers critically depending on the nature of the supply net-

30Another contributing factor is that global subsidy rates in 2020 were different from those in 2016. Results are
qualitatively similar if we used 2016 subsidy rates instead.

32



work and degree of supplier overlap. By shifting demand, China’s whitelist policy accelerated

learning among Chinese suppliers at the expense of others. The timing of policy implementation is

crucial: if China had delayed the policy by five years, its effectiveness in helping Chinese suppliers

gain a global competitive advantage would have diminished significantly, and its welfare impact on

China would have shifted from positive to negative.

We conclude by highlighting two directions for future research. First, our analysis abstracts

from market entry and production location decisions of automakers and battery suppliers, which

are critical for understanding the impacts of local content requirements recently implemented in

the U.S. and Europe, especially given Asia’s dominance in battery production. Head et al. (2024)

makes an important headway in that direction by developing a multi-stage production model,

though without incorporating LBD. Second, we do not explicitly account for the impacts on the

gasoline vehicle segment. How the EV policies affect this segment through substitution and prod-

uct line choices remains an open question.

References
Allcott, Hunt, Reigner Kane, Maximilian S Maydanchik, Joseph S Shapiro, and Felix Tintelnot. 2024. “The

Effects of “Buy American”: Electric Vehicles and the Inflation Reduction Act.” Working Paper 33032,
National Bureau of Economic Research.

Argote, Linda and Dennis Epple. 1990. “Learning Curves in Manufacturing.” Science 247 (4945):920–924.
Axsen, Jonn, Joseph Bailey, and Marisol Andrea Castro. 2015. “Preference and lifestyle heterogeneity

among potential plug-in electric vehicle buyers.” Energy Economics 50:190–201.
Banares-Sanchez, Ignacio, Robin Burgess, David Laszlo, Pol Simpson, John Van Reenen, and Yifan Wang.

2024. “Chinese Innovation, Green Industrial Policy and the Rise of Solar Energy.” Working Paper.
Barwick, Panle Jia, Hyuk-Soo Kwon, and Shanjun Li. 2024. “Attribute-based Subsidies and Market Power:

an Application to Electric Vehicles.” Working Paper 32264, National Bureau of Economic Research.
Barwick, Panle Jia, Hyuk-Soo Kwon, Shanjun Li, Yucheng Wang, and Nahim B Zahur. 2024. “Industrial

Policies and Innovation: Evidence from the Global Automobile Industry.” Working Paper 33138, National
Bureau of Economic Research.

Barwick, Panle Jia, Hyuk-soo Kwon, Binglin Wang, and Nahim Bin Zahur. 2023. “Pass-through of Electric
Vehicle Subsidies: A Global Analysis.” AEA Papers and Proceedings 113:323–28.

Benkard, Lanier. 2000. “Learning and Forgetting: The Dynamics of Aircraft Production.” American Eco-
nomic Review 90 (4):1034–1054.

———. 2004. “A Dynamic Analysis of the Market for Wide-bodied Commercial Aircraft.” Review of
Economic Studies 71:581–611.

Berry, Steven T., James Levinsohn, and Ariel Pakes. 1995. “Automobile Prices in Market Equilibrium.”
Econometrica 63 (4):841–890.

Bjerkan, Kristin Ystmark, Tom E Nørbech, and Marianne Elvsaas Nordtømme. 2016. “Incentives for pro-
moting battery electric vehicle (BEV) adoption in Norway.” Transportation Research Part D: Transport
and Environment 43:169–180.

33



Bloomberg NEF. 2023. “BloombergNEF Annual Battery Price Survey.”
Https://about.bnef.com/blog/lithium-ion-battery-pack-prices-hit-record-low-of-139-kwh/.

Bollinger, Bryan, Kenneth Gillingham, Todd Gerarden, Drew Vollmer, and Daniel Xu. 2024. “Strategic
Avoidance and Welfare Impacts of Solar Panel Tariffs.” Working Paper.

Chipty, Tasneem and Christopher M. Snyder. 1999. “The Role of Firm Size in Bilateral Bargaining: A Study
of the Cable Television Industry.” The Review of Economics and Statistics 81 (2):326–340.

CMT. 2022. “Vehicle Miles Traveled in Urban and Rural China.” Tech. rep., Chinese Ministry of Transport.
Conlon, Christopher and Jeff Gortmaker. 2023. “Incorporating Micro Data into Differentiated Products

Demand Estimation with PyBLP.” Tech. rep., National Bureau of Economic Research.
Covert, Thomas R. and Richard L. Sweeney. 2022. “Winds of Change: Estimating Learning by Doing

without Cost or Input Data.” Working paper.
Crawford, Gregory S, Robin S Lee, Michael D Whinston, and Ali Yurukoglu. 2018. “The welfare effects of

vertical integration in multichannel television markets.” Econometrica 86 (3):891–954.
Crawford, Gregory S. and Ali Yurukoglu. 2012. “The Welfare Effects of Bundling in Multichannel Television

Markets.” American Economic Review 102 (2):643–85.
Dasgupta, Partha and Joseph Stiglitz. 1988. “Learning-by-Doing, Market Structure and Industrial and Trade

Policies.” Oxford Economic Papers, New Series 40(2):246–268.
Deng, Shanglyu, Dun Jia, Mario Leccese, and Andrew Sweeting. 2024. “Bargaining and Dynamic Compe-

tition.” Working Paper .
Dorn, Jacob. 2024. “Dynamic Bargaining between Hospitals and Insurers.” Working Paper .
Draganska, Michaela, Daniel Klapper, and Sofia B. Villas-Boas. 2010. “A Larger Slice or a Larger Pie? An

Empirical Investigation of Bargaining Power in the Distribution Channel.” Marketing Science 29 (1):57–
74.

EPA. 2021. “Motor Vehicle Emissions Simulator (MOVES).” Tech. rep., U.S. Environmental Protection
Agency (EPA).

Eurostat. 2020. “Passenger Mobility Statistics in the European Union.” Tech. rep., Eurostat.
Fan, Ying and Chenyu Yang. 2020. “Competition, Product Proliferation, and Welfare: A Study of the US

Smartphone Market.” American Economic Journal: Microeconomics 12 (2):99–134.
FHWA. 2022. “Annual Vehicle Miles Traveled in the United States.” Tech. rep., Federal Highway Adminis-

tration (FHWA).
Gandhi, Amit and Jean-François Houde. 2019. “Measuring substitution patterns in differentiated products

industries.” Tech. rep., National Bureau of Economic Research.
Gerarden, Todd D. 2023. “Demanding Innovation: The Impact of Consumer Subsidies on Solar Panel

Production Costs.” Management Science 69 (12):7799–7820.
Goldberg, Pinelopi K, Réka Juhász, Nathan J Lane, Giulia Lo Forte, and Jeff Thurk. 2024. “Industrial Policy

in the Global Semiconductor Sector.” Working Paper 32651, National Bureau of Economic Research.
Gowrisankaran, Gautam, Vivian Ho, and Robert J Town. 2006. “Causality, learning and forgetting in

surgery.” Working Paper.
Gowrisankaran, Gautam, Aviv Nevo, and Robert Town. 2015. “Mergers When Prices Are Negotiated: Evi-

dence from the Hospital Industry.” American Economic Review 105 (1):172–203.
Grennan, Matthew. 2013. “Price Discrimination and Bargaining: Empirical Evidence from Medical De-

vices.” American Economic Review 103 (1):145–77.
Head, Keith. 1994. “Infant industry protection in the steel rail industry.” Journal of International Economics

37 (3):141–165.

34



Head, Keith, Thierry Mayer, Marc Melitz, and Chenying Yang. 2024. “Industrial policies for multi-stage
production: The battle for battery-powered vehicles.” Working Paper.

HEI. 2022. “State of Global Air Report.” Tech. rep., Health Effects Institute.
Ho, Kate and Robin S. Lee. 2017. “Insurer Competition in Health Care Markets.” Econometrica 85 (2):379–

417.
Holland, Stephen, Erin Mansur, Nicholas Muller, and Andrew Yates. 2016. “Are There Environmental

Benefits from Driving Electric Vehicles? The Importance of Local Factors.” American Economic Review
106 (12):3700–3729.

Horn, Henrick and Asher Wolinsky. 1988. “Bilateral Monopolies and Incentives for Merger.” The RAND
Journal of Economics 19 (3):408–419.

International Energy Agency. 2021. “Global EV Outlook 2021.” Tech. rep., IEA, Paris.
Https://www.iea.org/reports/global-ev-outlook-2021.

———. 2023. “Global EV Outlook 2023.” Https://www.iea.org/reports/global-ev-outlook-2023.
Irwin, Douglas A. and Peter J. Klenow. 1994. “Learning-by-Doing Spillovers in the Semiconductor Indus-

try.” Journal of Political Economy 102 (6):1200–1227.
KTI. 2023. “Annual Vehicle Miles Traveled in South Korea and Japan.” Tech. rep., Korea Transportation

Institute.
Küpper, Daniel, Kristian Kuhlmann, Sebastian Wolf, Cornelius Pieper, Gang Xu, and Justin Ahmad. 2018.

“The Future of Battery Production for Electric Vehicles.” Boston Consulting Group Working Paper .
Leard, Benjamin, Joshua Linn, and Katalin Springel. 2024. “Vehicle Attribute Tradeoffs and the Distribu-

tional Effects of US Fuel Economy and Greenhouse Gas Emissions Standards.” Working Paper.
Lee, Robin S. and Kyna Fong. 2013. “Markov-Perfect Network Formation: An Applied Framework for

Bilateral Oligopoly and Bargaining in Buyer-Seller Networks.” Working Paper .
Li, Jing. 2023. “Compatibility and Investment in the U.S. Electric Vehicle Market.” Working paper.
Li, Shanjun. 2018. “Better lucky than rich? Welfare analysis of automobile license allocations in Beijing

and Shanghai.” Review of Economic Studies 85 (4):2389–2428.
Li, Shanjun, Lang Tong, Jianwei Xing, and Yiyi Zhou. 2017. “The Market for Electric Vehicles: Indi-

rect Network Effects and Policy Impacts.” Journal of the Association of Environmental and Resource
Economists 4 (1):89–133.

Li, Shanjun, Xianglei Zhu, Yiding Ma, Fan Zhang, and Hui Zhou. 2021. “The Role of Government in the
Market for Electric Vehicles: Evidence from China.” Journal of Policy Analysis and Management .

Liang, Jing and Junji Xiao. 2024. “The Incidence and Distributional Effects of Electric Vehicle Subsidies in
China.” Working Paper.

Lohawala, Nofisa. 2023. “Roadblock or Accelerator? The Effect of Electric Vehicle Subsidy Elimination.”
RFF Working Paper.

Meijssen, Aart. 2019. “Dutch electric vehicle drivers’ preferences regarding vehicle-to-grid contracts.” TU
Delft, Delft .

Melitz, Marc. 2005. “When and How Should Infant Industries Be Protected?” Journal of International
Economics 66:177–196.

Muehlegger, Erich and David S. Rapson. 2022. “Subsidizing low- and middle-income adoption of electric
vehicles: Quasi-experimental evidence from California.” Journal of Public Economics 216:104752.

Ohashi, Hiroshi. 2005. “Learning by doing, export subsidies, and industry growth: Japanese steel in the
1950s and 1960s.” Journal of International Economics 66 (2):297–323.

Okada, Takanori, Tetsuya Tamaki, and Shunsuke Managi. 2019. “Effect of environmental awareness on

35



purchase intention and satisfaction pertaining to electric vehicles in Japan.” Transportation Research Part
D: Transport and Environment 67:503–513.

Plötz, Patrick, Till Gnann, Martin Kagerbauer, and Michael Heilig. 2017. “Can models predict electric
vehicle users?” .

Remmy, Kevin. 2022. “Adjustable product attributes, indirect network effects, and subsidy design: The case
of electric vehicles.” Working Paper.

Rennert,Kevin and Others. 2022. “Comprehensive evidence implies a higher social cost of CO2.” Nature
September:687–692.

Sheu, Gloria and Charles Taragin. 2021. “Simulating mergers in a vertical supply chain with bargaining.”
Rand Journal of Economics 52(3):596–632.

Springel, Katalin. 2019. “Network Externality and Subsidy Structure in Two-Sided Markets: Evidence from
Electric Vehicle Incentives.” American Economic Journal: Economic Policy 13 (4):393–432.

Thompson, Peter. 2001. “How Much Did the Liberty Shipbuilders Learn? New Evidence for an Old Case
Study.” Journal of Political Economy 109 (1):103–137.

———. 2012. “The Relationship between Unit Cost and Cumulative Quantity and the Evidence for Organi-
zational Learning-by-Doing.” Journal of Economic Perspectives 26 (3):203–24.

Thornton, Rebecca Achee and Peter Thompson. 2001. “Learning from Experience and Learning from Oth-
ers: An Exploration of Learning and Spillovers in Wartime Shipbuilding.” American Economic Review
91 (5):1350–1368.

USTR. 2019. “United States Trade Representative 2018 Report to Congress On China’s WTO Compliance.”
Vassileva, Iana and Javier Campillo. 2017. “Adoption barriers for electric vehicles: Experiences from early

adopters in Sweden.” Energy 120:632–641.
Villas-Boas, Sofia Berto. 2007. “Vertical relationships between manufacturers and retailers: Inference with

limited data.” The Review of Economic Studies 74 (2):625–652.
Wright, Theodore P. 1936. “Factors affecting the cost of airplanes.” Journal of the Aeronautical Sciences

3 (4):122–128.
Xing, Jianwei, Benjamin Leard, and Shanjun Li. 2021. “What Does an Electric Vehicle Replace?” Journal

of Environmental Economics and Management 107:102432.
Ziegler, Micah S. and Jessica E. Trancik. 2021. “Re-examining rates of lithium-ion battery technology

improvement and cost decline.” Energy & Environmental Science 14:1635–1651.

36



Figures & Tables

Figure 1: Vehicle Price vs. Battery Supplier Experience

(a) Residualized Prices Over Time (b) Residualized Prices vs. Supplier Experience

Notes: The residualized vehicle prices in these graphs are EV prices partialing out vehicle attributes (horsepower, size,
driving range, and the PHEV dummy), country, brand, and year fixed effects. In Panel (a), the purple dots depict
the average residualized price (in $1000 per kWh) by year while the red diamonds represent the average battery pack
prices from Bloomberg NEF (2023) (BNEF), with the marker size proportional to the total EV sales in a given year.
The residualized price is scaled so that it coincides with the BNEF battery pack price in 2014. The binned scatter plot
in Panel (b) shows the residualized prices (in $1000) against the cumulative experience of battery suppliers. The size
of the dot is proportional to the cumulative subsidy received by battery suppliers.

Figure 2: Demand Elasticities

(a) Price Elasticity (b) Semi-elasticity When Price Drops by $1000)

Notes: Panel (a) shows the histogram of price elasticities. The average is 3.51. The demand elasticity is less than
one (in absolute value) for 70 out of 4,556 observations. Given the multi-product nature of auto firms, only nine of
the 70 observations exhibit negative marginal costs. Panel (b) depicts the binned scatter plot for semi-elasticities (the
percentage change in sales for a $1,000 reduction in own prices) by country group. The sales-weighted average semi-
elasticity is 10.5% for China and varies from 6.5% to 7.4% for other country groups. The increase in the percentage of
sales is more pronounced for cheaper vehicles, implying more sensitive demand.

37



Figure 3: LBD and Battery Price Reduction
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Notes: Panel (a) decomposes the reduction in sales-weighted average battery prices from 2014 to 2020 into two com-
ponents: one driven by LBD and one by time trend. The bottom green line shows the battery price index from the
Bloomberg New Energy Finance series, while the red line from the second to the bottom depicts our model predic-
tions. Panel (b) shows the reduction in sales-weighted average battery prices that correspond to the learning component
γ0Ebt

γE . The red triangles represent battery costs for BYD & CATL in China, the black circles stand for LG & Samsung
in South Korea, and the blue squares stand for Panasonic & AESC in Japan. Chinese battery suppliers had higher costs
initially but experienced a faster reduction over time and closed the gap with their rivals by 2020.

Figure 4: Effect of Subsidies and LBD on Global EV Sales

Notes: This figure illustrates total EV sales across the top 13 EV countries under various scenarios. The solid black
line at the top represents observed EV sales with both LBD and consumer subsidies in effect. The second dashed green
line shows EV sales with LBD but no subsidies, while the third dash-dot orange line represents EV sales with subsidies
but no LBD. The dotted blue line at the bottom shows EV sales with neither LBD nor subsidies. LBD greatly amplifies
the sales-expansion effect of subsidies.
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Table 1: Summary Statistics

BEVs PHEVs
# of Obs. Mean Std. Dev. # of Obs. Mean Std. Dev.

Panel A: Vehicle Information

Sales 2,325 2886.7 9861.9 2,231 1343.8 3803.6
MSRP ($1,000) 2,325 45.12 28.26 2,231 71.93 33.68
Subsidy ($1,000) 2,325 4.72 4.57 2,231 1.94 2.09
Volume (m3) 2,325 12.49 3.63 2,231 13.80 1.95
Horsepower 2,325 156.84 116.33 2,231 212.25 82.60
Driving Range (km) 2,325 171.19 79.95 2,231 31.46 24.61

Panel B: Battery Information

Battery Capacity (kWh) 2,325 41.95 22.11 2,231 11.53 3.59
Chemistry: NMC 2,325 0.629 0.483 2,231 0.949 0.219
Chemistry: LFP 2,325 0.045 0.208 2,231 0.006 0.076
Chemistry: NCA 2,325 0.100 0.300 2,231 0.002 0.042

Panel C: Battery Supplier Information

Production Experience (# EV supplied) 204 86,672 199,272
Median Plant Capacity (GWh) 204 1.03 3.05
Cumulative Patents 204 542.6 1,437.0

Panel D: Market-level Information

Lithium Price Index (100 in 2011) 104 190.09 75.24

Notes: The sample covers 13 countries with the largest EV sales in the world from 2023 to 2020: Austria, Canada,
China, France, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, the UK, and the U.S. All prices
are in nominal $. The three major battery chemistry types are: NMC, Nickel Manganese Cobalt; LFP, Lithium iron
phosphate; and NCA, Nickel Cobalt Aluminum Oxide. The production capacity is the median capacity across all plants
operated by a battery supplier (a supplier has three plants on average). The lithium price is an index normalized to 100
in 2011 and is collected from COMTRADE for China and Europe, USGS for the U.S., and from Benchmark Mineral
Intelligence for other countries.
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Table 2: Demand Estimation Results

(1) (2) (3)
OLS logit IV logit Full model

Coef. S.E. Coef. S.E. Coef. S.E.

Linear Parameters
Consumer Price (α1) -0.016 0.002 -0.057 0.010 -0.017 0.009
PHEV 4.763 0.898 4.787 0.911 4.402 0.958
log(volume) -0.744 0.245 0.749 0.417 1.346 0.413
log(HP) 0.285 0.154 1.217 0.277 1.191 0.274
log(range) 1.229 0.163 0.918 0.184 1.025 0.192
log(range) x PHEV -0.780 0.209 -0.868 0.214 -0.638 0.219

Non-linear Price Coefficients (α2c/yi)
α2 for China - - - - 0.318 0.013
α2 for JP/SP/FR/DE - - - - 0.220 0.020
α2 for UK/NL/AT/SE - - - - 1.221 0.111
α2 for CA/NO/US/CH - - - - 0.616 0.026

Random Coefficients (σ )
Constant - - - - 0.330 0.038
log(volume) - - - - 0.077 0.013
log(HP) - - - - 0.032 0.004
Consumer Price - - - - 0.123 0.009

Fixed Effects
Country ✓ ✓ ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓

Notes: The demand estimation is based on annual sales by vehicle model by country in the top 13 EV countries from
2013 to 2020. The number of observations is 4,556. Columns (1) and (2) report results for the OLS and 2SLS Berry-
logit regressions, respectively. Price instruments include battery supplier dummies interacted with battery capacity, as
well as three BLP IVs. Column (3) is the random coefficient multinomial logit model and is estimated using simulated
GMM with micro-moments. The price coefficient αi is specified as α1 +

αc(i)
yi

+σpν
p
i , where yi is consumer income

and ν
p
i is unobserved preference shocks (i.i.d. log-normal draws). All regressions include country, brand, and year

fixed effects. The standard errors are clustered at the country by brand level.

40



Table 3: Supply-side Estimation Results

(1) (2) (3) (4)

Battery Cost Parameters
Learning Parameter γE -0.203 -0.135 -0.137 -0.113

(0.048) (0.044) (0.045) (0.052)
γ0(1000$/kWh) 1.095 1.071 1.082 0.858

(0.218) (0.169) (0.17) (0.164)
BK * Time Trend -0.024 -0.024 -0.032

(0.007) (0.007) (0.006)
BK * log(Plant Capacity) 0.024 -0.078

(0.043) (0.035)
BK * Battery Chemistry Dummies ✓ ✓ ✓ ✓
BK * Lithium Prices ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.997

(0.421)
PHEV 11.741 10.998 11.223 2.172

(2.017) (2.098) (2.164) (1.104)
Horsepower 0.273 0.274 0.275 0.244

(0.011) (0.011) (0.011) (0.007)
Volume -2.796 -2.524 -2.597 0.807

(0.647) (0.657) (0.678) (0.232)

Bargaining Parameter
Bargaining Weight λ b 0.503 0.484 0.488 0.275

(0.074) (0.08) (0.08) (0.132)

Fixed Effects
Country ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓
Battery Supplier ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓

Notes: This table reports parameter estimates for Equation (8). The dependent variable (EV price minus EV markups)
is in $1,000. The number of observations is 4,556. All specifications use 2-step GMM estimation with battery supplier
experience, battery markup (the variable corresponding to bargaining weight), and EV producer experience instru-
mented. The marginal cost of battery pack is specified as: BKb jct

(
γ0EγE

bt +CHb jctγ1 +PKbtγ2 +ηt
)
. BK is battery

capacity, γE is the learning parameter, and γ0 capture the baseline cost with Ebt = 1. The regression has four sets of
controls. The first set includes variables relevant to batteries’ marginal cost: battery capacity interacted with battery
chemistry (NMC, NCA, LFP) and lithium prices (with the coefficient different for Chinese and non-Chinese EV mod-
els), battery capacity interacted with the time trend (to capture industry-wise technological progress or cost shocks) and
with production capacity (to capture economies of scale). The second set includes vehicle attributes such as vehicle
fuel type (BEV or PHEV), vehicle size, horsepower, and EV producer experience (i.e., cumulative EV production by
each EV producer in logarithm) to capture LBD in EV manufacturing. The third set of controls is battery suppliers’
markups (with equal bargain weights). The last set of controls includes country, EV brand, battery supplier, and year
fixed effects.
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Table 4: Supply-side Estimation Results: Robustness to Bargaining Parameter

Bargaining Parameter Estimated λ b = 0 λ b = 0.25 λ b = 0.5
(1) (2) (3) (4)

Battery Cost Parameters
Learning Parameter γE -0.113 -0.100 -0.128 -0.132

(0.052) (0.05) (0.059) (0.055)
γ0(1000$/kWh) 0.858 0.877 0.781 0.829

(0.164) (0.166) (0.145) (0.159)
BK * Time Trend -0.032 -0.035 -0.032 -0.029

(0.006) (0.007) (0.007) (0.006)
BK * log(Plant Capacity) -0.078 -0.082 -0.078 -0.070

(0.035) (0.037) (0.036) (0.034)
BK * Battery Chemistry Dummies ✓ ✓ ✓ ✓
BK * Lithium Prices ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.997 -1.011 -0.998 -0.964

(0.421) (0.431) (0.422) (0.407)
PHEV 2.172 2.819 2.250 1.134

(1.104) (1.133) (1.109) (1.064)
Horsepower 0.244 0.252 0.245 0.232

(0.007) (0.007) (0.007) (0.007)
Volume 0.807 0.893 0.817 0.665

(0.232) (0.24) (0.234) (0.222)

Bargaining Parameter
Bargaining Weight λ b 0.275 0.00 0.25 0.50

(0.132)

Fixed Effects
Country ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓
Battery Supplier ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓

Notes: This table reports parameter estimates for Equation (8). The dependent variable (EV price minus EV markups)
is in $1,000. Column(1) is identical to Column (1) in Table 3. Columns (2)-(4) fix the bargaining parameter λ and es-
timate the remaining parameters by GMM with battery supplier experience and EV producer experience instrumented.
See Table 3 for variable definitions.
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Table 5: Impact of Consumer Subsidies

China Europe JP & KR US & CA Global

Panel (a): Impacts of US Subsidies

∆ Welfare ($ bn.) 0.49 2.24 5.65 8.09 16.47

∆ Consumer surplus (+) 0.14 0.96 0.04 13.35 14.48
∆ Battery profit (+) -0.21 - 4.59 - 4.38
∆ EV profit (+) 0.51 1.67 1.03 7.85 11.06
∆ Gov’t expenditure (-) -0.05 0.39 0.01 13.10 13.45

∆ EV sales 6,646 50,224 2,266 754,788 813,925

Panel (b): Impacts of European Subsidies

∆ Welfare ($ bn.) 0.75 3.03 5.49 2.32 11.60

∆ Consumer surplus (+) 0.15 14.63 0.04 0.89 15.71
∆ Battery profit (+) -0.11 - 3.97 - 3.87
∆ EV profit (+) 0.68 4.82 1.49 1.80 8.79
∆ Gov’t expenditure (-) -0.04 16.44 0.01 0.36 16.77

∆ EV sales 8,650 751,021 2,766 50,749 813,185

Panel (c): Impacts of Chinese Subsidies

∆ Welfare ($ bn.) 29.89 1.05 0.11 1.22 32.27

∆ Consumer surplus (+) 27.04 0.67 0.01 0.33 28.05
∆ Battery profit (+) 7.52 - -0.11 - 7.41
∆ EV profit (+) 17.60 0.62 0.21 1.02 19.45
∆ Gov’t expenditure (-) 22.27 0.24 0.00 0.13 22.65

∆ EV sales 2,696,916 30,267 732 18,780 2,746,696

Notes: This table shows the impacts (aggregated during 2013-2020) of consumer subsidies on social welfare and EV
adoption separately for China, Europe, Japan & South Korea, and US & Canada. Panel (a) estimated impacts of US
subsidies capture the difference between two scenarios with and without US subsidies but holding consumer subsidies
in China and Europe fixed. Panels (b) and (c) are obtained similarly.
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Table 6: Impacts of China’s Whitelist Policy

China Europe JP & KR US & CA Global

Panel (a): Impacts of China’s Whitelist itself in the presence of subsidies

∆ Welfare ($ bn.) 3.65 -0.59 -3.88 -1.41 -2.23

∆ Consumer surplus (+) -0.80 -0.48 -0.01 -0.58 -1.87
∆ Battery profit (+) 3.17 - -3.73 - -0.56
∆ EV profit (+) 0.19 -0.32 -0.13 -1.07 -1.33
∆ Gov’t expenditure (-) -1.08 -0.21 0.00 -0.24 -1.53

∆ EV sales -61,375 -26,162 -742 -33,196 -121,475

Panel (b): Impacts of China’s policy combination: Whitelist and Subsidies

∆ Welfare ($ bn.) 33.54 0.46 -3.77 -0.19 30.04

∆ Consumer surplus (+) 26.24 0.19 0.00 -0.25 26.18
∆ Battery profit (+) 10.69 - -3.85 - 6.85
∆ EV profit (+) 17.79 0.30 0.08 -0.05 18.13
∆ Gov’t expenditure (+) 21.19 0.04 0.00 -0.11 21.11

∆ EV sales 2,635,542 4,105 -10 -14,416 2,625,221

Notes: This table shows the impacts (aggregated during 2013-2020) of China’s policies on social welfare and EV adop-
tion separately for China, Europe, Japan & South Korea, and US & Canada. Panel (a) presents the impacts of China’s
whitelist policy, the difference between the two scenarios with and without the whitelist policy but holding consumer
subsidies in place. Panels (b) shows the impacts of the police combination (whitelist and consumer subsidies), the
difference between the two scenarios with and without the policy combination.
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Table 7: Impacts of China’s Whitelist Policy

China Europe JP & KR US & CA Global

China’s Whitelist Policy Implemented during 2021 - 2024

∆ Welfare ($ bn.) -1.65 -0.47 -0.98 -0.42 -3.51

∆ Consumer surplus (+) -3.39 -0.18 0.00 -0.10 -3.68
∆ Battery profit (+) 0.29 - -0.80 - -0.51
∆ EV profit (+) -1.40 -0.37 -0.17 -0.36 -2.31
∆ Gov’t expenditure (-) -2.85 -0.09 0.00 -0.04 -2.98

∆ EV sales -303,293 -10,817 -245 -6,178 -320,533

Notes: This table shows the impacts (aggregated during 2013-2025) of China’s policies on social welfare and EV adop-
tion separately for China, Europe, Japan & South Korea, and US & Canada. China’s whitelist policy was implemented
during 2021 - 2024. The table reports the difference between the two scenarios with and without the whitelist policy
but holding consumer subsidies in place.

Table 8: LBD and Policy Interactions

($ bn.) World China Rest of World

With LBD
∆ Welfare, Chinese subsidies 32.27 29.89 2.38
∆ Welfare, Whitelist -2.23 3.65 -5.88

Without LBD
∆ Welfare, Chinese subsidies 6.71 6.00 0.71
∆ Welfare, Whitelist -0.19 0.67 -0.86

Notes: This table shows the welfare impacts (aggregated during 2013-2020) of China’s consumer subsidies and the
whitelist policy with and without LBD.
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Online Appendix

Drive Down the Cost: Learning by Doing and Government

Policies in the Global EV Battery Industry

Panle Jia Barwick Hyuk-soo Kwon Shanjun Li Nahim Bin Zahur

A Data Construction

A.1 Battery Plant Capacity

Data on battery suppliers’ plants are compiled from the 2022 lithium-ion battery gigafactory

database by Automotive Logistics (AL) and market reports from Marklines1. The AL dataset

provides detailed plant characteristics by year and region, including manufacturing start year,

capacity in 2022, predicted capacity from 2023-2030, and city-level location. As of 2022, there

are 204 battery cell plants in Asia Pacific with a total capacity of 703 GWh, 73 cell plants in Eu-

rope with a total capacity of 160 GWh, and 48 cell plants in North America with a total capacity

of 95 GWh. The Marklines reports offer production capacity data from 2018-2021 for the top

ten Chinese cell suppliers (CATL, LG Energy, Panasonic, Findreams/BYD, EVE, CALB, Gotion

High-tech, Farasis Energy, SVOLT, and Sunwoda). We manually merged these two data sources.

For plants with missing capacity information, we supplemented the data by searching online news

reports. The following table illustrates the data collection process: The completed battery capac-

Table A1: Examples of Battery Plant Capacity Collection

Plant Name Cell Supplier News Report Start Year Capacity
2022 (GWh)

Address

CATL Yibin
manufacturing
site (1st and
2nd phase)

CATL CATL has completed the first expansion stage of its battery cell plant in the city of Yibin in
southwest China’s Sichuan Province, for which it has already commissioned the equipment.
The company puts the annual capacity of the completed section at 15 GWh. After completing
the second construction phase in two years as planned, the annual production capacity is ex-
pected to total 30 GWh. CATL indicates that a total of six phases of the project are planned...

2021 30 Yibin,
Sichuan

Panasonic-
Tesla

Panasonic Today a portion of Tesla’s vision became reality, with Panasonic and Tesla beginning produc-
tion of their “2170” cylindrical lithium-ion batteries at their “Gigafactory” in Reno, Nevada.
These cells will be used in Tesla’s Powerwall 2 and Powerpack 2 battery products, as well as
its Model 3 EVs. Tesla notes that production for qualification began in December at the Gi-
gafactory, which when complete will be the largest factory on earth. The mammoth building
is being completed in phases so that production can being inside finished sections and expand
later, and by 2018 the company expects the facility to be making 35 gigawatt-hours per year
of battery cells...

2016 35 Reno, Nevada

ity dataset contains 263 plants of 99 cell suppliers ranging from 1992 to 2023. The top 10 cell

suppliers by total capacity are CATL, BYD, SVOLT, LG Energy, CALB, EVE Energy, Panasonic,

AESC, Gotion High-tech, Farasis, which consist of 83.04% of global battery capacity.

1See: Automotive Logistic and Markline Analysis Report.
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A.2 Income Distribution

The World Inequality Database (WID) provides annual data on three key metrics for most coun-

tries: (1) average income, (2) the income share of the bottom 50% (p0-50), and (3) the income

share of the top 10% (p90-100). Using these statistics, we calibrate the location and dispersion

parameters of the Lognormal distribution, Lognormal(µm,σm) for each market m (a country-year

pair). First, we express µm as a function of σm by matching the mean of the lognormal distribu-

tion, exp(µm +σ2
m/2), to the average income reported by WID for the market. We then determine

σm (and consequently µm(σm)) by minimizing the following objective function:

(predicted p0-50−observed p0-50)2 +(predicted p90-100−observed p90-100)2.

A.3 IV Construction for Battery Experience

We construct the IV for battery experience using Eqn (9): IVbt =∑s<t ∑ j P̂r jbcs(zzz jbcs)q̂ jcs(X jcs,φ jcs),

which has two components: 1) the probability that EV model j sold in country c at time s chooses

battery supplier b, and 2) predicted sales of model j. We use the demand model in Section 3 to

generate predicted sales q̂ jcs, as explained in the main text. Here we discuss how we predict the

probability that model j chooses supplier b: P̂r jbcs.

EV models rarely switch battery suppliers during our sample. Hence, we assume that an EV

maker selects a battery supplier (from a choice set that includes all battery suppliers active in that

country) during the year when an EV model is first released in a given country. The unit of anal-

ysis is an EV model and battery supplier pair by country and model-release-year. We allow EV

makers to choose different battery suppliers for the same EV model sold in different countries.2

This is because batteries are expensive to transport and it may be cost-efficient to source from

nearby production facilities. In addition, EV makers may choose domestic battery suppliers to

satisfy domestic content requirements.

We use a logit model, where the outcome variable is one if an EV model chooses a supplier

and zero otherwise. We only use variables that are likely uncorrelated with cost shocks ω jct as

controls. They are a dummy variable for China’s White List policy (that equals one for EVs in

China and if the supplier is Chinese from 2016-2019, and 0 otherwise), a home bias dummy (that

equals one if the supplier-OEM pair has the same country-of-origin), dummies for supplier-OEM

pairs that are vertically integrated (BYD - BYD and AESC - RNM), the initial supply network (a

dummy that equals one if the supplier-OEM pair had a supply relationship at the beginning of the

2For example, Hyundai’s Kia K5 model in 2018 used CATL batteries for the model sold in China but batteries from
LG for the model sold in other countries.
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sample period), a dummy for whether the initial supply relationship was in the same country as

the one where the EV is produced and age of each supplier. We also control for a supplier’s char-

acteristics in the initial year: average battery capacity, the most common chemistry of batteries

produced, and the average number of models for which the firm was a battery supplier. Finally,

we include interaction terms between initial supply-network links, supplier characteristics, and

EV characteristics (volume, horsepower, battery capacity, range, and battery chemistry).

B Modeling Details

B.1 Simultaneous Contracting and Pricing

Under the assumption of simultaneous contracting and pricing, bargaining over battery prices

and EV price setting happens simultaneously. Let dv,Simult and db,Simult denote the disagreement

payoffs for EV supplier v and battery supplier b. Then the equations characterizing the Nash-in-

Nash bargaining equilibrium (equation (4)) can be written as:

(1−λ
b)(πb −db,Simult)︸ ︷︷ ︸

b’s gains from trade

∂πv

∂τ j
+λ

b (πv −dv,Simult)︸ ︷︷ ︸
v’s gains from trade

∂πb

∂τ j
= 0.

We now describe how we use the above bargaining FOCs as well as the FOCs characteriz-

ing downstream EV pricing to derive upstream markups as a function of downstream markups

and bargaining weight (equation (5)). This closely follows Draganska, Klapper, and Villas-Boas

(2010).

Profits and disagreement payoffs The profits for EV producer v and battery supplier b can be

written as:

π
v(p) = ∑

k∈Ωv

(pk − τk −mcv
k)qk(p,φ)

= ∑
k∈Ωv

mkv
kqk(p,φ)

π
b(p) = ∑

k∈Ωb

(τk −mcb
k)qk(p,φ)

= ∑
k∈Ωb

mkb
kqk(p,φ)
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Their disagreement payoffs are:

dv,Simult(p) = ∑
k∈Ωv

(pk − τk −mcv
k)q̃k(p,φ)

= ∑
k∈Ωv

mkv
kq̃k(p,φ)

db,Simult(p) = ∑
k∈Ωb

(τk −mcb
k)q̃k(p,φ)

= ∑
k∈Ωb

mkb
k q̃k(p,φ)

which embed that when bargaining breaks down over the battery price for vehicle j (i.e., when

there is a disagreement), vehicle j is removed from the market, but all other vehicles are supplied

at the same prices as they would be under agreement. Here, note that q̃ j(p,φ) = 0 (since q̃ denotes

the sales when vehicle j is not offered).

Gains from trade The gains from trade for EV maker v can be written as:

π
v −dv,Simult = ∑

k∈Ωv

mkv
k[qk(p,φ)− q̃k(p,φ)]

Likewise, the gains from trade for battery supplier b can be written as:

π
b −db,Simult = ∑

k∈Ωb

mkb
k [qk(p,φ)− q̃k(p,φ)]

Profit derivatives The derivative of EV producer v’s profits with respect to the battery price for

vehicle j, τ j, can be written as:

∂πv

∂τ j
=−q j

This is because under simultaneous bargaining, an incremental change in the battery price has no

direct effect on downstream EV prices, so there are no derivatives of downstream EV prices with

respect to battery prices.

In a similar fashion, the derivative of battery supplier b’s profits with respect to τ j can be writ-

ten as:
∂πb

∂τ j
= q j
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Upstream markup We now plug in the above expressions for the gains from trade and profit

derivatives into the bargaining FOC for the battery price for vehicle j:

(1−λ
b)(πb −db,Simult)︸ ︷︷ ︸

b’s gains from trade

(−q j)+λ
b (πv −dv,Simult)︸ ︷︷ ︸

v’s gains from trade

q j = 0

π
b −db,Simult =

λ b

1−λ b (π
v −dv,Simult)

We will now combine this FOC across different vehicles j to obtain the full vector of up-

stream markups as a function of the vector of dowstream markups. To facilitate this, we define

a matrix S, whose j,k term equals qk(p,φ)− q̃k(p,φ) (where recall that q̃k(p,φ equals the sales of

vehicle k when there is disagreement over the battery price of vehicle j and vehicle j is removed

from the set of products offered). Let Tv denote the ownership matrix for EV producers: T v(k, l)

equals 1 if vehicles k and l are produced by the same EV producer, and is 0 otherwise. Similarly,

let Tb denote the ownership matrix for battery suppliers: T b(k, l) equals 1 if the batteries for vehi-

cles k and l are supplied by the same battery supplier, and is 0 otherwise.

Then in matrix form, the gains from trade to EV producers and battery suppliers can be re-

spectively written as:

π
v

π
v

π
v −dv,Simultdv,Simultdv,Simult = (Tv ⊗S)mkmkmkv

π
b

π
b

π
b −db,Simultdb,Simultdb,Simult = (Tb ⊗S)mkmkmkb

where ⊗ denotes element-by-element multiplication.

Plugging these into the above bargaining FOC, we obtain:

[Tb ⊗S]mkmkmkb =
λ b

1−λ b [T
v ⊗S]mkmkmkv

mkmkmkb =
λ b

1−λ b [T
b ⊗S]−1[Tv ⊗S]mkmkmkv

which is the key equation capturing how upstream markups can be expressed as a function of

downstream markups.

B.2 Sequential Contracting and Pricing

In the sequential contracting and pricing game, EV makers and battery suppliers first negotiate

battery prices, after which EV makers set EV prices based on the observed battery prices. The

battery prices are determined to maximize the Nash product:

NPj(τ j,τ− j) = (πv −dv,Sequential)︸ ︷︷ ︸
v’s gains

(1−λ b) (πb −db,Sequential)︸ ︷︷ ︸
b’s gains

λ b
(A1)
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and the bargaining FOCs are the same as before. However, two changes arise in Equation (4) due

to the new timing assumptions:

• The disagreement profits dv,Sequential and db,Sequential depend on the new equilibrium down-

stream EV prices that would arise if EV model j is not offered: that is, downstream EV

prices are no longer constant under disagreement.

• The derivatives of downstream and upstream profits with respect to battery prices differ

from simultaneous bargaining, since firms anticipate that any change in the negotiated bat-

tery price will result in a change in downstream EV prices.

Disagreement payoffs The disagreement payoffs for EV producer v and battery supplier b

when upstream bargaining and downstream price-setting happen sequentially are:

dv,Sequential(p) = ∑
k∈Ωv

(p̃k − τk −mcv
k)q̃k(p̃,φ)

= ∑
k∈Ωv

m̃k
v
kq̃k(p̃,φ)

db,Sequential(p) = ∑
k∈Ωb

(τk −mcb
k)q̃k(p̃,φ)

= ∑
k∈Ωb

m̃k
b
k q̃k(p̃,φ)

Here, q̃, p̃ and m̃k represent the equilibrium EV sales, prices and markups when product j is ex-

cluded from the market.

Gains from trade The gains from trade for EV maker v from selling vehicle j can be expressed

as

π
v −dv,Sequential = ∑

k∈Ωv

[
mkv

kqk(p,φ)− m̃k
v
k q̃k(p̃,φ)

]
Stacking these across vehicle models, we can write down the gains from trade to EV produc-

ers as:

π
v

π
v

π
v −dv,Sequentialdv,Sequentialdv,Sequential = (Tv ⊗Mv) · l

Here, Mv captures the changes in vehicle k profits when there is disagreement over the bat-

tery price for vehicle j (taking into account that the downstream prices for all other vehicles will

be adjusted upon disagreement), ⊗ denotes element-by-element multiplication, and l is a vector

consisting entirely of ones.

Similarly, the gains from trade for battery supplier b from supplying batteries for EV model j
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is given by

π
b −db

j = ∑
k∈Ωb

[
mkb

k(τ)qk(p)−mkb
k(τ)q̃k(p̃)

]
,

Stacking these across vehicle models, the gains from trade to battery suppliers can be expressed:

π
b

π
b

π
b −db,Sequentialdb,Sequentialdb,Sequential = (Tb ⊗ S̃) ·mkmkmkb

In this case, the j,k term of S̃ equals qk(p,φ)− q̃k(p̃,φ). S̃ therefore represents the changes in

sales upon disagreement, similar to the matrix S defined in the previous Section B.1, except that it

takes into account that downstream prices are reset upon disagreement.

Profit derivatives The derivative of the EV maker’s profit with respect to the battery price τ j is

expressed as
∂πv

∂τ j
= ∑

k∈Ωv

dπv
k

dτ j

and in matrix form, this can be written as (Tv ⊗ ∆πv

τ ) · l, where ∆πv

τ collects the derivatives of

downstream profits with respect to upstream prices. Similarly, the derivative of the battery sup-

plier’s profit with respect to the battery price τ j is given by

∂πb

∂τ j
= ∑

k∈Ωb

dπb
k

dτ j
= ∑

k∈Ωb

(
1{k = j} ·qk +mkb

k
∂qk

∂τ j

)
which in matrix form becomes qqq+ (Tb ⊗∆

q
τ) ·mkmkmkb, where ∆

q
τ collects the derivatives of down-

stream sales with respect to battery prices.

Upstream markup Then, the bargaining FOC becomes

(1−λ
b)
[
(Tb ⊗ S̃) ·mkmkmkb

]
⊗
[
(Tv ⊗∆

πv

τ ) · l
]
+λ

b [(Tv ⊗Mv) · l]⊗
[
qqq+(Tb ⊗∆

q
τ) ·mkmkmkb

]
= 0.

From this, we can derive upstream markups as follows:

mkmkmkb =−
[
(1−λ b)

λ b ·Xt · (Tb ⊗ S̃)+(Tb ⊗∆
q
τ)

]−1

·qqq, (A2)

where Xt is a diagonal matrix defined as:

Xt := diag
([

(Tv ⊗∆
πv

τ ) · l
]
⊘ [(Tv ⊗Mv) · l]

)
.

The notation ⊘ denotes element-wise division. With the above expression for upstream markups

(as a function only of the bargaining weight λ b and quantities that can be calculated following

demand estimation, such as downstream markups) in hand, the supply-side estimation process

follows the steps as outlined in Section 4.2.
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B.3 Linear pricing

Here we describe how to derive upstream markups in the simple linear pricing model (Villas-

Boas, 2007). In the first stage of this game, upstream battery suppliers simultaneously choose bat-

tery prices; and in the second stage, downstream EV producers simultaneously choose EV prices,

after observing the battery prices. Note that this is equivalent to the sequential contracting and

pricing model described above when λ b = 1 i.e., when upstream battery suppliers can make take-

it-or-leave-it offers to downstream EV producers. Setting λ b = 1 in equation (A2), we obtain the

following equation for upstream markups in the linear pricing model:

mkmkmkb =−(Tb ⊗∆
q
τ)

−1 ·qqq. (A3)

B.4 Dynamic Bargaining

We assume that battery suppliers are forward-looking while EV makers are myopic (and max-

imize current period profits). Battery suppliers and EV firms bargain over battery prices while

downstream EV markups are chosen simultaneously to maximize EV firms’ profits πv(p) =

∑ j∈Ωv(p j − τ j −mcv
j)q j(p,φ). The assumption that markups are chosen simultaneously ensures

that changes in negotiated battery prices directly affect downstream EV prices (i.e., ∂ p j
∂τ j

̸= 0).

These price adjustments influence EV sales and, in turn, battery sales, which subsequently impact

battery suppliers’ production experience and future production costs.3

Battery supplier b and EV producer v bargain over battery price τ j to maximize the following

Nash product:
NPvb,t(τ jt ,τ− jt) = (πv

t −dv
vb,t)︸ ︷︷ ︸

v’ gains

(1−λ b) (V b
t −Db

vb,t)︸ ︷︷ ︸
b’ gains

λ b
. (A4)

In the Nash product, the downstream profits πv
t and deviation payoffs dv

vb,t are the same as those

in Equation (A1). On the other hand, battery suppliers’ gains from trade is a dynamic value func-

tion that incorporates future profit gains. Battery supplier’s payoff upon agreement V b
t is defined

as:

V b
t = ∑

k∈Ωb
t

mkb
kt ·qkt(mkv

kt +mkb
kt +mckt)+

∞

∑
s=1

β
s

∑
k∈Ωb

t+s

mkb
kt+s ·qkt+s(mkv

kt+s +mkb
kt+s +mckt+s), (A5)

where mkv represents the downstream markup, mkb denotes the upstream markup, and mc is the
total marginal cost of production, consisting of marginal costs of producing batteries and non-
battery vehicle components (mcb +mcv). The equilibrium quantity q is determined by the final

3The bargaining model in the main text assumes that EV prices are determined simultaneously with the negotiated
battery prices. Under this assumption, battery suppliers have no direct influence on downstream prices or sales
∂ p j
∂τ j

= 0. Consequently, they cannot lower the negotiated battery price today to increase experience tomorrow.
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EV price, which is equal to mkv +mkb +mc.4 The second term in Equation (A5) is the discounted
sum of future profits and reflects the battery supplier’s dynamic considerations. We set the time
discount rate β to 0.95. Battery supplier’s deviation payoff is defined as:

Db
vb,t = ∑

k∈Ωb
t \ j

mkb
kt · q̃kt(mkv

kt +mkb
kt +mckt)+

∞

∑
s=1

β
s

∑
k∈Ωb

t+s

mkb
kt+s ·qkt+s(mkv

kt+s +mkb
kt+s + m̃ckt+s),

where q̃kt represents sales when product j is withdrawn from the market.5 In the second term,

m̃ct+s refers to future marginal costs when the quantity in period t is q̃t instead of qt .

We add three simplification assumptions:

A1) Battery suppliers believe the current market structure, consumer preference, and market size

to continue indefinitely:

Ω
v
t+s = Ω

v
t and Ω

b
t+s = Ω

b
t for all s = 1,2, ...

A2) Battery suppliers do not consider the impact of the current battery price on future markups:
∂mkv

kt+s
∂τ jt

=
∂mkb

kt+s
∂τ jt

= 0 for all j,k, and s.

A3) Battery suppliers assume the future markups to remain the same as the current level:

mkv
jt+s = mkv

jt and mkb
jt+s = mkb

jt for all j and s.

Adjusting the battery price in the current period affects not only current profits but also the

experience gained by battery suppliers, which influences future production costs. The future prof-

its depend on future markups and quantities, and thus, the choice of the current battery price can

impact future profits in two ways: (1) by changing future markups and (2) by influencing future

sales volumes.

Assumption A2) indicates that battery suppliers do not account for how the current markup

choices affect future markups when negotiating battery prices with automakers. Instead, they fo-

cus solely on how the current battery prices affect future sales quantities via LBD cost reductions,

assuming that future markups remain fixed at certain levels. Additionally, Assumption A3) sug-

gests that battery suppliers expect future markups would be fixed to approximately at their current

levels. In summary, when negotiating current markups through the bargaining process, battery

suppliers ignore the potential impact of current bargaining outcomes on future markups, only con-

sidering how the current battery prices affect future sales through learning.

4The battery price for EV model k is equal to its production cost plus the battery supplier’s markup τk = mcb
k +mkb

k .
5Prices of other EVs remain unchanged by construction.
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With these assumptions, the bargaining FOC with respect to battery prices is as follows:

(1−λ
b)(V b

t −Db
vb,t)

∂πv
t

∂τ jt
+λ

b(πv
t −dv

vb,t)
∂V b

t

∂τ jt
= 0.

The derivative of battery suppliers’ payoff under agreement w.r.t. battery price becomes:

∂V b
t

∂τ jt
= q jt + ∑

k∈Ωb
t

mkb
kt ·

∂qkt

∂ p jt︸ ︷︷ ︸
Impact on current profit

+
∞

∑
s=1

β
s

∑
k∈Ωb

t

mkb
kt ·∑

m

∂qkt+s

∂ pmt+s

dmcmt+s

dτ jt
.︸ ︷︷ ︸

Impact on future profits via LBD

In matrix notation, the bargaining FOC can be rewritten as:

(1−λ
b)
[
(T b

t ⊗S+t ) ·mkb
t

]
⊗ [(T v

t ⊗∆t) ·mkv
t ]+λ

b [(T v
t ⊗St) ·mkv

t ]⊗
[
qt +(T b

t ⊗∆
+
t ) ·mkb

t

]
= 0,

where ⊗ is the element-wise multiplication. Note that T and S are the same as those defined in
Equation 5. In contrast, S+ is a deviation matrix that incorporates dynamic terms. Specifically, the
( j,k)-element of S+ is given by:

(qkt − q̃kt)+
∞

∑
s=1

β
s · (q jt+s − q̃ jt+s). (A6)

In comparison, S only includes the first term in Equation A6. The matrix ∆ represents the deriva-
tive of EV demand in period t with respect to EV prices. The ∆

+
t incorporates the derivatives of

future EV demand due to changes in future marginal costs through LBD. Specifically, the ( j,k)-
element of ∆

+
t is:

∂qkt

∂ p jt
+

∞

∑
s=1

β
s
∑
m

∂qkt+s

∂ pmt+s

dmcmt+s

dτ jt
. (A7)

Note that ∆t only includes the first term in Equation A7.

Finally, we derive the upstream markup as a function of the downstream markup from the

bargaining FOC, similar to the approach in Section 3:

mkb
t =−

[
(1−λ b)

λ b ·Xt · (T b
t ⊗S+t )+(T b

t ⊗∆
+
t )

]−1

·qt , (A8)

where Xt is a diagonal matrix:

Xt := diag
(
[(T v

t ⊗∆t) ·mkv
t ]⊘ [(T v

t ⊗St) ·mkv
t ]

)
.
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The notation ⊘ denotes element-wise division. Once the upstream markups are expressed as a

function of the downstream markups, the estimation process follows the steps as outlined in Sec-

tion 4.2.

C Counterfactual Analyse and Simulations

C.1 Supply Network Formation Model

We conduct counterfactual simulations to examine two types of policies: (1) consumer subsidies

and (2) domestic content requirements. As the domestic content requirement policy is likely to

affect the supply network and shift battery sales from foreign to domestic suppliers, we need to

develop a network formation model that predicts supply links with and without the domestic con-

tent requirement.

The unit of analysis for the network formation model is an EV model-battery supplier-country-

year combination, with a total of 23,495 observations. The model includes a rich set of controls

for the lagged network structure, a dummy for China’s whitelist policy, the subsidy rate offered

by country c in time t for a given EV model, the experience of the battery supplier, a home bias

dummy, dummies for supplier-OEM pairs that are vertically integrated, and initial attributes of

EV suppliers. Table A8 reports estimation results for this network formation model. The gen-

erosity of subsidies provided is a key variable of interest that generates exogenous variation in the

predicted network formation. It equals the subsidy per EV sold, provided the supply relationship

meets the eligibility requirement for EV consumer subsidies (i.e., the domestic content require-

ment). During China’s whitelist policy in 2016-2019, Chinese EV models that sourced batteries

from suppliers not on the list (e.g., non-Chinese battery suppliers) were ineligible for subsidies.

The coefficient estimate is large in magnitude and statistically significant. The other variables

have the expected signs. For example, battery suppliers with more accumulated experience are

more likely to be selected, and EV makers are more likely to select battery suppliers with whom

they have past relationships.

C.2 Algorithm for Counterfactual Analyses

For each counterfactual analysis, we conduct 100 simulations and report the average outcomes.

The simulation process involves the following steps: in the initial year of 2013, given EV and

battery production costs, battery prices are determined by the upstream bargaining FOCs in Equa-

tion (4), and EV prices are set based on the downstream price competition FOCs in Equation (3).

A-11



Equilibrium EV sales are calculated based on these prices. We update the cumulative produc-

tion experience of battery producers using these equilibrium EV sales, and increased cumulative

production experience results in lower battery production costs in 2014 (LBD). If new EV mod-

els enter the market in 2014, we draw a battery supplier based on the link formation model and

the predicted probabilities of supplier selection. Using the updated production costs and battery

supply network, equilibrium prices and sales are recalculated. This process is repeated annually

through 2020. Because the link formation process involves randomness, we simulate the equilib-

rium path from 2013 to 2020 a total of 100 times. The welfare tables and figures are based on the

average outcome across these 100 simulations.

When simulating the effect of the Whitelist policy, EV models are allowed to choose a battery

supplier in 2016, the policy’s beginning year. Hence, in simulations where the Whitelist policy is

in place, EV models have two opportunities to choose a battery supplier: once upon entering the

market and again in 2016 (for those that entered before 2016). One of the counterfactual analyses

(Table 7) examines the welfare implications of postponing the whitelist to 2021-2025 after the fi-

nal sample year. To simulate firm profit and consumer surplus from 2021 to 2025, we assume that

the market structure and global subsidies during this period remain the same as the final sample

year 2020. Specifically, EV firms, EV models, and battery suppliers are assumed to be the same

as in 2020. Note that China’s subsidy rates declined steadily from 2013 to 2020, while subsidies

in other regions fluctuated. As battery suppliers accumulate production experience, the learning-

induced reduction in production costs persists throughout the forward simulation. All EV models

choose a battery supplier in the first year of the forward simulation (2021) when the Whitelist be-

comes effective. The subsequent steps of the simulation follow the procedures described above.

C.3 EV’s Environmental Benefits

Here we describe the environmental benefits of replacing a gasoline vehicle with an EV. Replac-

ing a gasoline vehicle with an electric vehicle (EV) delivers significant environmental benefits

through reductions in carbon emissions and air pollution. These benefits are monetized as carbon

benefits (via the social cost of carbon) and health benefits (via reduced pollutant exposure). We

explain how these two items are calculated below.

Carbon Benefit The carbon benefit reflects the avoided economic damages from reduced CO2

emissions. A typical gasoline vehicle emits 4.6 tons of CO2 annually, assuming an average annual

vehicle miles traveled (VMT) of 11,500 miles in the U.S. (FHWA, 2022). The average annual

VMT for China, Europe, and South Korea / Japan is 10,000 miles (CMT, 2022), 9,500 miles/year

(Eurostat, 2020), and 10,200 miles/year (KTI, 2023), respectively. Emission reductions when a
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gas vehicle is replaced with an EV vary by the carbon intensity of electricity grids (International

Energy Agency, 2023). The emission reduction factor is estimated to be 50% for China (due to

its coal-heavy grid), 70% for the U.S. (due to its relatively clean grid with renewables and nat-

ural gas), 60% for Europe (moderately clean grid with significant renewables), and 52.5% for

South Korea and Japan (mixed reliance on fossil fuels and nuclear). Finally, the latest estimate of

the social cost of carbon is $185 per ton of CO2, based on comprehensive global evidence (Ren-

nert,Kevin and Others, 2022). The lifetime CO2 savings for each region is calculated as: 4.6 tons

of CO2 per year ×Region VMT
US VMT × Emission Reduction Factor × Vehicle lifetime of 12 years.

Health Benefit The health benefit is derived from reductions in air pollutants such as PM2.5,

NOx, and VOCs, which are linked to respiratory and cardiovascular diseases, premature deaths,

and other health issues. The health costs of different pollutants are: $100,000 to $200,000 per ton

of PM2.5 (HEI, 2022), $10,000 to $40,000 per ton of NOx (EPA, 2021), and $5,000 to $15,000

per ton of VOCs (Holland et al., 2016). The total lifetime health benefit is calculated similarly to

carbon savings.

Environmental Benefits The lifetime environmental benefits of replacing a gasoline vehicle

with an EV are summarized in Table A2. In summary, the lifetime environmental benefit of re-

placing a gasoline vehicle with an EV ranges from $16,465 (South Korea & Japan) to $19,506

(China). These estimates are based on CO2 savings valued using the social cost of carbon and

health benefits from reduced air pollutants. Regional variations reflect differences in annual vehi-

cle miles traveled, grid carbon intensity, and air quality conditions.

Table A2: Lifetime Environmental Benefits of Replacing a Gasoline Vehicle with an EV by Region

Region CO2 Savings Carbon Benefit Health Benefit Total Benefit
(ton/year) ($) ($) ($)

China 2.3 5,106 14,400 19,506
United States 3.22 7,141 12,000 19,141
Europe 2.76 6,124 10,800 16,924
South Korea & Japan 2.42 5,365 11,100 16,465

Notes: The calculation of environmental benefits assumes 12 years of vehicle lifetime.

A-13



D Appendix Figures
Figure A1: Global EV Diffusion

(a) EV Sales by Region
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(b) ZEV Targets and Market Shares

Notes: in Panel (a), the bars (left y-axis) report the annual sales of new EVs (BEVs and PHEVs) by region from 2012
to 2023. China, Europe, and the U.S. accounted for over 95% of global EV sales during the data period. The grey line
(right y-axis) depicts the global share of EVs in new vehicle sales. Panel (b) depicts the zero-emission vehicle (ZEV)
targets and market shares over time by country. ZEVs include EVs and fuel cell vehicles but are predominantly EVs.
Source: International Energy Agency and the International Council on Clean Transportation.
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Figure A2: Battery supplier network

(a) 2013 network (b) 2020 network

Notes: The figure depicts the vertical relationship between battery suppliers (on the left) and EV producers (on the
right). The top 6 battery suppliers and top 8 EV producers are shown separately, illustrating a bilateral oligopoly
market structure. The thickness of the lines represents the battery sales volume in units.

Figure A3: EV Subsidies

(a) Average subsidies by country (b) Subsidy design in China

Notes: Panel (a) shows the average federal subsidy per eligible EV by country during 2013-2020 while Panel (b)
shows the subsidy schedule for BEVs in China where the amount of subsidy is based on driving range (Barwick,
Kwon, and Li, 2024).
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Figure A4: China’s whitelist policy

(a) Domestic sourcing of batteries (b) Battery sales

(c) Residualized Vehicle price (d) Battery Export Price

Notes: Panel (a) shows the share of EV models sourcing from Chinese battery suppliers separately for EV models
sold in China, and those sold elsewhere. Panel (b) shows the growth of (average) experience of battery suppliers
overtime separately for the top-two Chinese suppliers, and the top-four non-Chinese suppliers. Panel (c) depicts the
average EV price by year for the two groups. The two dotted vertical lines defines China’s whitelist policy. Panel (d)
shows the free-on-board battery price ($/kWh) by country-of-origin from UN Comtrade. The price unit in Comtrade
was $/liter and we transform it to $/kWh based on average energy density for each year during the period.
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Figure A5: Instruments for Experience and Battery Markups

(a) Experience (b) Battery markup

Notes: Binned scatter plots to illustrate the strength of the IVs for the experience and markups of battery suppliers.
Residuals are obtained from partialing out vehicle attributes, as well as country fixed effects, brand fixed effects, and
year fixed effects.

Figure A6: Impact of China’s Whitelist policy on battery production

(a) Chinese Battery (b) JP & KR Battery

Notes: Panel (a) shows EV battery production by Chinese suppliers with and without China’s Whitelist policy. Panel
(b) depicts battery production by non-Chinese suppliers under the two scenarios.
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Figure A7: Impact of late and early China’s Whitelist policy on battery production

(a) Early Whitelist, Chinese Battery (b) Eearly Whitelist, JP & KR Battery

(c) Late Whitelist, Chinese Battery (d) Late Whitelist, JP & KR Battery

Notes: Panel (a) illustrates EV battery production by Chinese suppliers under scenarios with and without China’s
Whitelist policy. Panel (b) presents battery production by non-Chinese suppliers under the same scenarios. Panels (c)
and (d) depict the impact on forward-simulated battery production if the Whitelist policy were implemented between
2021 and 2024.
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E Appendix Tables

Table A3: LBD Estimation Results With Sequential Bargaining

Bargaining Parameter λ b = 0 λ b = 0.25 λ b = 0.5 λ b = 0.75 λ b = 1
(1) (2) (3) (4) (5)

Battery Cost Parameters
Learning para. γE -0.101 -0.106 -0.111 -0.117 -0.123

(0.05) (0.051) (0.052) (0.052) (0.053)
γ0(1000$/kWh) 0.873 0.863 0.851 0.839 0.826

(0.163) (0.167) (0.165) (0.162) (0.159)
BK*Time Trend -0.035 -0.034 -0.032 -0.031 -0.030

(0.007) (0.007) (0.007) (0.006) (0.006)
BK*log(Plant Capacity) -0.081 -0.079 -0.076 -0.073 -0.070

(0.037) (0.036) (0.035) (0.034) (0.033)
BK*battery chemistry dummies ✓ ✓ ✓ ✓ ✓
BK*lithium prices ✓ ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.979 -0.985 -0.989 -0.991 -0.992

(0.431) (0.425) (0.419) (0.413) (0.407)
PHEV 2.781 2.350 1.917 1.491 1.075

(1.133) (1.114) (1.093) (1.072) (1.05)
Horsepower 0.252 0.247 0.241 0.236 0.230

(0.007) (0.007) (0.007) (0.007) (0.007)
Volume 0.906 0.834 0.757 0.676 0.592

(0.24) (0.236) (0.231) (0.226) (0.221)

Fixed Effects
Country ✓ ✓ ✓ ✓ ✓
EV brand ✓ ✓ ✓ ✓ ✓
Battery supplier ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓

Notes: This table reports supply-side parameter estimates under sequential bargaining (Appendix ??). We calibrate
different values of the bargaining parameter λ and estimate the remaining parameters by GMM with battery sup-
plier experience and EV producer experience being instrumented. The marginal cost of battery pack is specified as:
BKb jct

(
γ0EγE

bt +CHb jctγ1 +PKbtγ2 +ηt
)
. BK is battery capacity; γE is the learning parameter; and γ0 capture the base-

line cost. The regression has three sets of controls. The first set includes the variables specified in the battery marginal
cost: battery capacity interacting with battery chemistry (NMC, NCA, LFP), battery capacity interacting with time
trend to capture industry-wise technological progress or cost shocks, battery capacity interacted with lithium prices
(with the coefficient allowed to be different for Chinese and non-Chinese EV models), and battery capacity interacted
with production capacity of the firm to capture economies of scale. The second set includes vehicle attributes such as
vehicle fuel type (BEV or PHEV), vehicle size, horsepower, and EV producer experience (i.e., cumulative EV produc-
tion by each EV producer in logarithm) to capture LBD in automobile manufacturing. The third set of controls include
country fixed effects, EV brand fixed effects, battery supplier fixed effects, and year fixed effects.
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Table A4: LBD Estimation Results With Forward-Looking Battery Suppliers

Bargaining Parameter λ b = 0 λ b = 0.25 λ b = 0.5 λ b = 0.75 λ b = 1
(1) (2) (3) (4) (5)

Battery Cost Parameters
Learning para. γE -0.099 -0.105 -0.110 -0.115 -0.120

(0.051) (0.053) (0.055) (0.058) (0.06)
γ0(1000$/kWh) 0.873 0.856 0.839 0.820 0.801

(0.168) (0.168) (0.168) (0.168) (0.168)
BK*Time Trend -0.035 -0.033 -0.032 -0.031 -0.030

(0.007) (0.007) (0.006) (0.006) (0.006)
BK*log(Plant Capacity) -0.081 -0.079 -0.077 -0.075 -0.073

(0.037) (0.036) (0.035) (0.034) (0.034)
BK*battery chemistry dummies ✓ ✓ ✓ ✓ ✓
BK*lithium prices ✓ ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.973 -0.981 -0.992 -1.005 -1.021

(0.43) (0.424) (0.419) (0.413) (0.408)
PHEV 2.778 2.314 1.864 1.425 0.999

(1.132) (1.113) (1.094) (1.076) (1.059)
Horsepower 0.251 0.247 0.242 0.237 0.232

(0.007) (0.007) (0.007) (0.007) (0.007)
Volume 0.912 0.845 0.777 0.708 0.636

(0.24) (0.235) (0.231) (0.226) (0.222)

Fixed Effects
Country ✓ ✓ ✓ ✓ ✓
EV brand ✓ ✓ ✓ ✓ ✓
Battery supplier ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓

Notes: This table reports supply-side parameter estimates when battery firms are forward-looking (with a discount
factor of 0.95) (Appendix B.4). We calibrate different values of the bargaining parameter λ and estimate the remaining
parameters by GMM with battery supplier experience and EV producer experience being instrumented. The marginal
cost of battery pack is specified as: BKb jct

(
γ0EγE

bt +CHb jctγ1 +PKbtγ2 +ηt
)
. BK is battery capacity; γE is the learning

parameter; and γ0 capture the baseline cost. The regression has three sets of controls. The first set includes the variables
specified in the battery marginal cost: battery capacity interacting with battery chemistry (NMC, NCA, LFP), battery
capacity interacting with time trend to capture industry-wise technological progress or cost shocks, battery capacity
interacted with lithium prices (with the coefficient allowed to be different for Chinese and non-Chinese EV models), and
battery capacity interacted with production capacity of the firm to capture economies of scale. The second set includes
vehicle attributes such as vehicle fuel type (BEV or PHEV), vehicle size, horsepower, and EV producer experience
(i.e., cumulative EV production by each EV producer in logarithm) to capture LBD in automobile manufacturing. The
third set of controls include country fixed effects, EV brand fixed effects, battery supplier fixed effects, and year fixed
effects.
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Table A5: LBD: Spillovers Across Firms

(1) (2)
No spillovers Spillovers

Battery Cost Parameters
Learning para. γE -0.113 -0.173

(0.052) (0.093)
γ0(1000$/kWh) 0.858 1.029

(0.164) (0.371)
BK*Time Trend -0.032 -0.022

(0.006) (0.006)
BK*log(Plant Capacity) -0.078 -0.062

(0.035) (0.018)
Within-country spillover, θ 0.044

(0.131)
BK*battery chemistry dummies ✓ ✓
BK*lithium prices ✓ ✓
Vehicle Cost Parameters
EV Experience -0.997 -1.032

(0.421) (0.412)
PHEV 2.172 2.064

(1.104) (1.102)
Horsepower 0.244 0.243

(0.007) (0.007)
Volume 0.807 0.877

(0.232) (0.23)
Bargaining Parameter
Bargaining weight, λ b 0.275 0.274

(0.132) (0.133)
Fixed Effects
Country ✓ ✓
EV brand ✓ ✓
Battery supplier ✓ ✓
Year ✓ ✓

Notes: This table reports the parameter estimates for Equation (8). Column(1) is identical to Column (1) from Table
3. In Column (2), we include the experience of rival firms in the same country scaled by a parameter θ that we
estimate; we instrument for rival experience using predicted rival experience constructed based on Equation (9). All
specifications use GMM estimation with battery supplier experience, battery markup (the variable corresponding to
bargaining weight), and EV producer experience being instrumented. The marginal cost of battery pack is specified as:
BKb jct

(
γ0Ebt

γE +CHb jctγ1 +PKbtγ2 +η ∗ t
)
. See Table 3 for variable definitions.
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Table A6: LBD Estimates After Controlling for Firm-Level Patent Stock

(1) (2)

Battery Cost Parameters
Learning para. γE -0.113 -0.122

(0.052) (0.094)
γ0(1000$/kWh) 0.858 0.587

(0.164) (0.155)
BK*Time Trend -0.032 0.022

(0.006) (0.008)
BK*log(Plant Capacity) -0.078 -0.111

(0.035) (0.04)
BK*log(Cumulative Patents) -0.095

(0.01)
BK*battery chemistry dummies ✓ ✓
BK*lithium prices ✓ ✓

Vehicle Cost Parameters
EV Experience -0.997 -1.280

(0.421) (0.401)
PHEV 2.172 -1.331

(1.104) (1.055)
Horsepower 0.244 0.225

(0.007) (0.007)
Volume 0.807 0.848

(0.232) (0.216)

Bargaining Parameter
Bargaining weight, λ b 0.275 0.487

(0.132) (0.049)

Fixed Effects
Country ✓ ✓
EV brand ✓ ✓
Battery supplier ✓ ✓
Year ✓ ✓

Notes: This table reports the parameter estimates for Equation (8). Column(1) is identical to Column (1) from Table 3.
All specifications use GMM estimation with battery supplier experience, battery markup (the variable corresponding
to bargaining weight), and EV producer experience being instrumented. In Column (2), we allow the per-kWh battery
cost to depend on the logarithm of cumulative patents applied for by the battery firm; we instrument for this using the
cumulative sum of subsidies received by the battery firm, as well as the interaction between cumulative subsidies and
battery capacity.
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Table A7: Impact of Increase in CATL or Panasonic Experience in 2013

CATL experience Panasonic experience

Chian RoW Global Japan RoW Global

∆ Battery profit 1.00 0.00 1.00 1.00 -0.02 0.98
∆ EV profit 2.60 -0.01 2.59 2.56 -0.08 2.48
∆ Consumer surplus 6.06 0.00 6.06 2.13 2.95 5.08
∆ Expenditure 2.25 0.00 2.25 1.77 -0.04 1.73

∆ Welfare 7.41 -0.01 7.39 3.93 2.88 6.81

Notes:This table shows welfare changes resulting from an increase in the experience of CATL or Panasonic starting
in 2013 (and continuing thereafter as experience accumulates). The impact on battery profits in the respective coun-
tries (China for CATL and Japan for Panasonic) is normalized to one. All other values represent relative changes
compared to the battery profit in the corresponding country.
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Table A8: Network Formation Model for Counter-factual Simulations

Dep. var.: Link formed
Eligible Subsidy 0.471∗∗∗

(0.111)
log(Supplier Experience) 0.666∗∗∗

(0.159)
Supplier-OEM lagged link 2.884∗∗∗

(0.199)
Supplier-OEM lagged link, same country 0.501∗∗∗

(0.127)
Dummies for vertically integrated firms Yes
Initial link, home bias Yes
Fixed effects for top 6 suppliers Yes
Supplier characteristics Yes
Log-likelihood -1265.59
Observations 23495

Note: The unit of analysis is a model-country-year-battery supplier combination. The dependent variable is one if the
EV producer (i.e., OEM) for that EV model sources battery from a given battery supplier, and zero otherwise. The
results are from a conditional logit regression. Standard errors are clustered at the country - OEM level.
For the counter-factual simulations, we assume the choice set for each OEM includes every top 15 battery supplier
that had already entered the global market. We also allow EV makers to choose a new battery supplier for each EV
model in the year 2016 (even for existing models), since some of our counter-factual simulations involve unexpected
policy shocks in the year 2016. Eligible subsidy equals the subsidy per EV sold, provided the supply relationship
meets the eligibility requirement for EV consumer subsidies: during China’s whitelist period 2016-2019, EVs in
China are ineligible for subsidies if their battery supplier is not on the White List. We control for the lagged net-
work structure by including a dummy variable that equals one if the supplier-OEM pair had a supply relationship in
the previous period, and another dummy variable for whether they had a previous supply relationship in the same
country. Other controls include a control for home bias, which is a dummy variable being one if the supplier-OEM
pair has the same country of origin. We include dummies for all supplier-OEM pairs that are vertically integrated:
namely, BYD - BYD and AESC - RNM alliance. We also include the age of each supplier, as well as the following
initial characteristics of the supplier: the average battery capacity, the most common chemistry of batteries initially
supplied, and the average number of models for which the firm was a battery supplier. Finally, fixed effects for each
of the top 6 battery suppliers are included.
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Table A9: Impact of Consumer Subsidies Including Environmental Benefits

China Europe JP & KR US & CA Global

Panel (a): Impacts of US Subsidies

∆ Welfare ($ bn.) 0.62 3.09 5.68 22.54 31.93

∆ Consumer surplus (+) 0.14 0.96 0.04 13.35 14.48
∆ Battery profit (+) -0.21 - 4.59 - 4.38
∆ EV profit (+) 0.51 1.67 1.03 7.85 11.06
∆ Gov’t expenditure (-) -0.05 0.39 0.01 13.10 13.45
∆ Environ. benefit (+) 0.13 0.85 0.04 14.45 15.46

∆ EV sales 6,646 50,224 2,266 754,788 813,925

Panel (b): Impacts of European Subsidies

∆ Welfare ($ bn.) 0.92 15.74 5.54 3.29 25.49

∆ Consumer surplus (+) 0.15 14.63 0.04 0.89 15.71
∆ Battery profit (+) -0.11 - 3.97 - 3.87
∆ EV profit (+) 0.68 4.82 1.49 1.80 8.79
∆ Gov’t expenditure (-) -0.04 16.44 0.01 0.36 16.77
∆ Environ. benefit (+) 0.17 12.71 0.05 0.97 13.90

∆ EV sales 8,650 751,021 2,766 50,749 813,185

Panel (c): Impacts of Chinese Subsidies

∆ Welfare ($ bn.) 82.50 1.56 0.12 1.58 85.76

∆ Consumer surplus (+) 27.04 0.67 0.01 0.33 28.05
∆ Battery profit (+) 7.52 - -0.11 - 7.41
∆ EV profit (+) 17.60 0.62 0.21 1.02 19.45
∆ Gov’t expenditure (-) 22.27 0.24 0.00 0.13 22.65
∆ Environ. benefit (+) 52.61 0.51 0.01 0.36 53.49

∆ EV sales 2,696,916 30,267 732 18,780 2,746,696

Notes: This table shows the impacts (aggregated during 2013-2020) of consumer subsidies on social welfare includ-
ing environmental benefits and EV adoption separately for China, Europe, Japan & South Korea, and US & Canada.
Panel (a) estimated impacts of US subsidies capture the difference between two scenarios with and without US subsi-
dies but holding consumer subsidies in China and Europe fixed. Panels (b) and (c) are obtained similarly.

A-25



Table A10: Impact of Consumer Subsidies without Learning

China Europe JP & KR US & CA Global

Panel (a): Impacts of US Subsidies

∆ Welfare 0.19 0.90 1.78 1.47 4.33

∆ Consumer surplus 0.00 0.00 0.00 3.87 3.87
∆ Battery profit 0.03 - 1.21 - 1.24
∆ EV profit 0.16 0.90 0.57 1.58 3.22
∆ Gov’t Expenditure 0.00 0.00 0.00 3.99 3.99

Panel (b): Impacts of European Subsidies

∆ Welfare 0.30 2.06 1.48 0.21 4.05

∆ Consumer surplus 0.00 5.25 0.00 0.00 5.25
∆ Battery profit 0.06 0.01 1.13 0.00 1.19
∆ EV profit 0.25 2.22 0.36 0.21 3.04
∆ Gov’t expenditure 0.00 5.43 0.00 0.00 5.43

Panel (c): Impacts of Chinese Subsidies

∆ Welfare 6.00 0.21 0.27 0.22 6.71

∆ Consumer surplus 6.06 0.00 0.00 0.00 6.06
∆ Battery profit 1.66 0.00 0.19 0.00 1.85
∆ EV profit 4.33 0.21 0.08 0.22 4.85
∆ Gov’t expenditure 6.04 0.00 0.00 0.00 6.04

Notes: This table shows the impacts (aggregated during 2013-2020) of consumer subsidies on social welfare sep-
arately for China, Europe, Japan & South Korea, and US & Canada in the absence of LBD. Panel (a) estimated
impacts of US subsidies capture the difference between two scenarios with and without US subsidies but holding
consumer subsidies in China and Europe fixed. Panels (b) and (c) are obtained similarly.
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