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Abstract

This paper exploits the universe of credit- and debit-card transactions in China during 2013-

2015 and provides the first nationwide analysis of the healthcare cost of PM2.5 for a developing

country. We leverage spatial spillovers of PM2.5 from long-range transport to generate ex-

ogenous variation in local pollution and employ a flexible distributed lag model to capture

semiparametrically the dynamic response of pollution exposure. Our analysis shows signifi-

cant impacts of PM2.5 on healthcare spending in both the short and medium terms. A 10 µg/m3

decrease in PM2.5 would reduce annual healthcare spending by more than $9.2 billion, about

1.5% of China’s annual healthcare expenditure.
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1 Introduction

The mortality and morbidity impact of air pollution is an essential component of the overall benefit

of environmental regulations. The existing literature has primarily focused on the impact of air

pollution on mortality.1 There is a limited understanding of the morbidity cost of air pollution from

all health outcomes and a lack of a commonly agreed method to measure it (WHO, 2015). Among

the studies on the morbidity impact of pollution, most of them focus on specific health outcomes

(such as asthma attacks) and the associated physiological channels of the impact.2 Different from

mortality, morbidity outcomes have diverse endpoints ranging from respiratory problems to cardio-

vascular diseases and lung cancer, as well as multiple complications that could arise for those with

pre-existing conditions. Therefore, the morbidity outcomes are much harder to collect and measure

on a large scale than mortality (Landrigan et al., 2018), especially in developing countries.

As a result of the increased pressure from economic development and lax environmental reg-

ulations, developing countries and especially emerging economies, such as China and India, are

currently experiencing the worst air pollution in the world. This is especially concerning given

the size of the population and the lack of access to adequate health care in these countries. While

policymakers in these countries are increasingly aware of the negative impacts of air pollution

on human health and quality of life, data on health outcomes are limited, and rigorous empirical

evidence on the health impact of air pollution is only emerging recently. Consequently, the dose-

response relationships (between pollution exposure and health outcomes) estimated using data from

developed countries have often been used as critical inputs for evaluating environmental regulations

in developing countries, raising the question of external validity of this benefit-transfer approach

(Arceo et al., 2015; OECD, 2016).

This study fills these two gaps in the literature by offering, to our knowledge, the first com-

prehensive, nationwide analysis of how air pollution affects health expenditures from all medical

1For papers on mortality, see for example Chay and Greenstone (2003); Currie and Neidell (2005); Currie and Walker
(2011); Knittel et al. (2015); Clay et al. (2016); Ebenstein et al. (2017); Anderson (2020).

2For example Pope (1989); Dockery (2009); Pope and Dockery (2012); Neidell (2004); Schlenker and Walker (2016).

1



conditions for a developing country.3 We combine hourly air pollution readings from all monitor-

ing stations from January 2013 to December 2015 with the universe of credit and debit card (or

‘bank card’) transactions in China during the same period. The transaction data come from the

UnionPay Network, the largest payment network in the world, and the only inter-bank payment

network in China. The data contain transactions for 2.7 billion bank cards that contribute to over

$5 trillion of economic transactions annually. In addition to covering 51% of private healthcare

spending in China in 2015, this dataset also includes spending in over 300 non-healthcare cate-

gories. Our approach of using healthcare spending data (which includes both the frequency and

value of transactions) allows us to quantify the aggregate healthcare cost without explicitly exam-

ining every health outcome that is negatively affected by pollution. Although our data on bank card

transactions in healthcare facilities do not contain information on the specific diagnoses or treat-

ment associated with these transactions, we provide evidence on the strong correlation between our

spending data and health outcomes at both the macro- and micro-levels.

There are two key empirical challenges in identifying the causal effect of air pollution on health-

care spending. The first challenge is the potential endogeneity in contemporaneous and lagged

PM2.5 levels that we use to capture pollution exposure. The endogeneity can arise from unobserv-

ables that affect both the pollution level and consumer spending (e.g., economic conditions). In

addition, there could be measurement errors in constructing pollution exposure using air quality

monitoring data. Because the pollution level could vary greatly across locations within a city, res-

idents’ pollution exposure should be measured ideally by the population-weighted local pollution.

However, monitoring stations are located sparsely across space as is common in other countries,

preventing us from constructing population-weighted averages at a fine geographic scale.

To deal with the endogeneity, we construct instrumental variables by modeling the spatial

spillovers of PM2.5 due to fine particles’ long-range transport property. Our IV approach is similar

3A growing literature uses health insurance claims data to examine the impact of air pollution on healthcare spending in
the U.S. (Deschênes et al., 2017; Williams and Phaneuf, 2016; Deryugina et al., 2019). In developing countries, health
insurance tends to be inadequately provided, and detailed insurance data at the national level are hard to find. The
current system of healthcare delivery in China is fragmented and hospital-centered, with little effective collaboration
among institutions in different tiers of the system (Wang et al., 2018b), making it difficult to obtain consistent micro-
level data on health outcomes for the whole country.
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to the identification strategy used in Bayer et al. (2009), Williams and Phaneuf (2016), and Deryug-

ina et al. (2019). The first two studies construct IVs based on air quality predictions from the EPA’s

source-receptor matrix that uses distant polluting facilities as inputs, while the latter study exploits

changes in daily wind directions in a county as exogenous shocks to local air pollution. Based on

a parsimonious model of PM2.5 concentration in the spirit of EPA’s air quality modeling, we disen-

tangle the contribution of local and non-local sources and use PM2.5 concentration from non-local

sources as an exogenous variation. This allows us to leverage factors that directly affect pollution

transport in constructing IVs, including wind patterns and other meteorological conditions in both

the source and receptor cities, as well as geographic information such as distance.

Our instruments are weighted averages of lagged PM2.5 levels in distant cities where the weights

are a function of the distance between the source and receptor cities, wind direction and speed,

and other meteorological conditions. To examine the role of different identification variations, we

experiment with alternative IVs, including the historical average and hence the time-invariant level

of air pollution in source cities, IVs that only use wind direction in the destination city interacted

with regional dummies as in Deryugina et al. (2019) and do not depend on local conditions, as

well as placebo tests that randomize wind direction and speed. Our results indicate that both wind

direction and other meteorological conditions (wind speed, precipitation, and temperature) provide

important exogenous identifying variation.

The second challenge in estimating the causal effect of pollution on healthcare spending arises

from the nature of the high-frequency data. On the one hand, the rich data variation provides an

opportunity to examine the dynamic impacts of past pollution exposure. On the other hand, daily

pollution measures exhibit high autocorrelation. A direct OLS or IV estimation that includes many

lagged terms leads to oscillating and imprecise estimates. We propose a flexible distributed lag

model that extends the Almon technique (Almon, 1965) and uses finite-order B-splines (Corradi,

1977) to flexibly capture the effects of long lags. We combine this framework with the IV method

to address endogeneity in contemporaneous and lagged air pollution measures. Our empirical
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framework is semiparametric in nature and can flexibly accommodate various data patterns.4

Our analysis based on daily healthcare spending by city shows that a short-run (i.e., con-

temporaneous) increase of 10 µg/m3 in PM2.5 leads to 0.65% more healthcare transactions. A

medium-run (i.e., three-months) increase of PM2.5 by 10 µg/m3 leads to 2.65% more healthcare

transactions.5 The impact of PM2.5 differs across health facilities: spending in Children’s hospi-

tals is more than twice as responsive as spending in other types of health facilities. Non-healthcare

spending experiences a negative impact of PM2.5 in the short-term but no significant impact beyond

a few weeks. In addition, the predicted worsening of air quality the next day increases current-day

spending in both health and non-healthcare categories. These results provide evidence of avoidance

behavior, whereby consumers reduce outdoor activities to mitigate pollution exposure.

We have conducted a host of robustness checks, including various parametric specifications of

the medium-term impact, alternative approaches for constructing the instrumental variables and

placebo tests, other identification strategies, more flexible controls of meteorological conditions,

the inclusion of other pollutants such as CO, SO2 and average PM2.5 in cities in the same region,

different buffer zones, alternative B-spline segments, and different sample cuts. Our results are

robust to these alternative specifications. The estimates are also similar if we conduct the analysis

using the number of healthcare transactions per capita or control for card penetration over time.

In monetary terms, a medium-run reduction of 10 µg/m3 in daily PM2.5 generates annual sav-

ings in healthcare spending that exceed 59.6 billion yuan, or $9.2 billion.6 This is equivalent to

$22.4 per household per year. Reducing China’s PM2.5 to the World Health Organization’s (WHO)

annual standard of 10 µg/m3 from the level observed in our sample period could lead to savings ex-

ceeding $42 billion per year, nearly 7% of China’s national healthcare spending or 0.4% of China’s

GDP in 2015.

How does the estimated healthcare cost from this study compare to the mortality cost estimates

4This framework is less restrictive than a more intuitive framework that regresses the current-day spending on the
average pollution during a time window (e.g., the past week or month), where the effect of pollution is assumed
constant over the time window.

5The 90-day average PM2.5 is 56 µg/m3, with a standard deviation of 27µg/m3 during our sample period.
6We use an exchange rate of $1= 6.5 yuan throughout this analysis. The 95% confidence interval of the healthcare
savings ranges from 4.0-115.2 billion yuan.
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in the literature? Ebenstein et al. (2017) examine the mortality impact of PM10 in China for different

age groups. Their results imply that the monetized mortality cost based on the Value of a Statistical

Life (VSL) is $13.4 billion from a 10 unit increase in PM10. Our estimated healthcare cost of

$9.2 billion is therefore about two-thirds of the mortality cost estimates in the literature. The ratio

between pollution’s healthcare cost and mortality cost in China is similar to the estimate derived

by Deschênes et al. (2017) who analyze reductions in NOx emissions in the U.S. These findings

contribute to a better understanding of the significance of air pollution’s morbidity cost and are

in contrast to the common perception that morbidity is a minor component of the overall health

impact of air pollution.7

Our study makes several contributions to the literature. First, to our knowledge, this is the first

comprehensive study that analyzes the effect of pollution on healthcare spending at the national

level for a developing country. Our paper adds to the growing literature that examines air pollution

in developing countries (Arceo et al., 2015; Greenstone and Hanna, 2014; He et al., 2016; Ebenstein

et al., 2017). Different from these studies, which all focus on mortality, our analysis studies the

impact of air pollution on spending in healthcare facilities. Among its recommendations to reduce

pollution’s economic costs, the Lancet Commission on pollution and health (Landrigan et al., 2018)

calls for further research to improve the morbidity cost estimates of pollution, recognizing that it is

more difficult to measure the morbidity impact than mortality. Our analysis directly contributes to

this research endeavor and highlights the economic magnitude of the morbidity impact.

Second, our analysis provides an alternative to the benefit-transfer approach commonly used

in the literature to evaluate the health impact of air pollution in developing countries (due to a

lack of rigorous empirical evidence from these countries). The benefit-transfer approach takes the

dose-response function estimated in developed countries and interpolates the mortality or morbid-

ity benefit from reduced air pollution to developing countries (Lelieveld et al., 2015; World Bank,

2007). This approach may lead to significant inaccuracies due to differences in air pollution levels,

baseline health conditions, and access to health care between these two groups of countries. In

7EPA (2011) estimates that the morbidity benefit from the Clean Air Act from 1990 to 2020 is about 8% of the mortality
benefit. WHO (2015) applies an additional 10% of the overall mortality cost as an estimate for the morbidity cost.
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addition, to monetize the health impact, the dose-response function is then combined with poten-

tially ad hoc assumptions on the monetary costs for different illnesses (e.g., the cost of one asthma

attack). Our analysis is not subject to these concerns. Our estimates suggest that China’s elevated

PM2.5 level relative to the WHO’s annual standards entails $42 billion additional healthcare expen-

diture in 2015. This estimate is an order of magnitude larger than the estimate in OECD (2016)

based on the benefit-transfer approach.

Third, the rich spatial and temporal variation in our data allows us to examine both the short-

and medium-term impacts of air pollution on healthcare spending. Most studies focus on the con-

temporaneous impact by using daily or quarterly data and abstract away from the dynamic impact

of air pollution. This is partly because it is difficult to disentangle the short-term and medium-

term health impacts when current and lagged air pollution variables are both endogenous and at

the same time exhibit high autocorrelations. We address this challenge by developing a novel

approach that adapts a flexible distributed lag model to the IV setting. Our method is semipara-

metric, computationally light and has several advantages over existing methods such as VARs or

local projection methods. It delivers a smooth impulse-response function of both the short- and

medium-term effects, easily incorporates instrumental variables, and can accommodate theoretical

restrictions reflecting researchers’ prior about the data generating process. To our knowledge, our

study is the first analysis in the economics literature that exploits this technique to study the short-

and medium-term health impacts with high-frequency data.8

The rest of the paper is organized as follows. Section 2 describes the data and air pollution

challenges facing China. Section 3 discusses our empirical framework and the identification strat-

egy. Section 4 presents estimation results, and Section 5 calculates the morbidity cost based on

parameter estimates. Section 6 concludes.

8While semi-parametric distributed lag models have been more widely used in the epidemiology literature (e.g., Gas-
parrini et al. (2017)), our paper is the first to utilize this methodology in conjunction with instrumental variables to
address endogeneity.
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2 Data Description

Our analysis is based on three comprehensive, nationwide, micro-level datasets of air pollution,

consumer spending by category, and meteorological conditions from January 2013 to December

2015, aggregated to the city by day level. These datasets enable us to evaluate the impact of air

pollution on consumer spending in both the short- and medium-terms, as well as heterogeneous

impacts across regions and pollution levels.

2.1 Air Pollution

For nearly four decades, China has maintained its GDP growth at an annual rate of nearly 10% and

has transformed from an agricultural economy to a manufacturing-dominated economy. China be-

came the world’s largest exporter in 2009 and the largest trading nation in 2013. This unprecedented

economic growth is largely propelled by fossil fuels, with coal accounting for about two-thirds of

aggregate energy consumption and oil nearly twenty percent. China is by far the world’s largest

energy consumer, accounting for roughly a quarter of the world’s total energy consumption.

Fast economic growth and rising energy consumption have put enormous pressure on the en-

vironment, with air, water, and soil pollution becoming serious challenges that adversely affect

human health, ecosystems, and the quality of life.9 Improving air quality has become an important

policy goal for the central government, which extensively revised the Environmental Protection

Law in 2014 and defined goals of pollution abatement in both the 12th (2011–2015) and 13th

(2016–2020) five-year plans.

Fine-scale air quality data at monitoring stations in China only became publicly available in

2013 (Barwick et al., 2022). The Ministry of Environmental Protection (MEP) publishes hourly

measures of PM2.5, CO, SO2, NO2, and O3. The number of monitoring stations and cities covered

increased steadily from 1003 stations in 159 cities in 2013 to 1582 stations in 367 cities in 2015.

We calculate the daily concentration of PM2.5 and other pollutants at the city level by averaging
9Lelieveld et al. (2015) estimate that air pollution led to 1.3 million premature deaths in China in 2010 (40% of the
global total). World Bank (2007) puts the health cost of air pollution at 1.2-3.8% of China’s GDP in 2003.
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data across monitoring stations within a city.

Air pollution affects human health mainly through its impact on respiratory and cardiovascular

systems. Several decades of study in epidemiology and more recently in economics have associated

exposure to air pollution with increases in mortality and morbidity risks (Brunekreef and Holgate,

2002; Pope and Dockery, 2012). Fine particles (PM2.5), the focus of our analysis, are shown to

be especially detrimental to health as they can penetrate deep into the lungs and carry toxins to

other organs. High levels of PM2.5 irritate respiratory and cardiovascular systems and can lead to

aggravated asthma, lung disease, heart attacks, and stroke.

Appendix Figure J1 plots the three-year average of PM2.5 from 2013 to 2015 across cities.

China’s nationwide average during this period is 56 µg/m3 (with a standard error of 46 µg/m3),

which is much higher than the annual standard of 12 µg/m3 set by the U.S. Environmental Protec-

tion Agency and also higher than the annual standard of 35 µg/m3 by China’s MEP.10 Notably, there

is considerable regional disparity. Cities in northern and central China with a high concentration of

manufacturing industries suffer from the most severe pollution, with many of them experiencing a

three-year average PM2.5 concentration of 90 µg/m3 or higher. The less-developed regions in the

west and wealthy regions in the south have better air quality. The latter, especially regions along

the coast, has seen noticeable improvement in air quality as a result of shutting down or relocating

polluting industries and reorienting the industry structure toward high-tech and service industries.

One advantage of our empirical analysis is the rich variation in pollution measures, both across

cities and over time. To illustrate the time-series variation, we present in Appendix Figure J2 the

daily PM2.5 concentration for the nation (the top panel) and separately for four regions (the bottom

panel). The daily PM2.5 concentration is higher than 35 µg/m3, the official MEP standard, in most

days for all parts of the country. The northern regions have more pronounced peaks in winter than

the southern region, largely because of the coal-fired central heating systems north of the Huai

River (Ebenstein et al., 2017). The pollution level has been decreasing in all regions, partly driven

by tighter regulations and changes in China’s industry structure (Greenstone et al., 2021).

10U.S. EPA’s daily standard is 35 µg/m3 and the annual standard is 12 µg/m3. China’s MEP set limits on PM2.5 for the
first time in 2012 to take effect in 2016: the daily standard is 75 µg/m3 and the annual standard is 35 µg/m3.
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2.2 Credit and Debit Transactions

The second main database for our analysis is the universe of credit and debit card (or ‘bank card’)

transactions in China that are settled through the UnionPay network. The UnionPay network is the

only inter-bank payment network in China and is state-owned. It is the largest network in the world

in terms of both the number and value of transactions, ahead of Visa and Mastercard. There were

2.7 billion cards in use from 2013 to 2015, covering over 300 merchant categories and contributing

to over $5 trillion of economic transactions annually.11,12 We observe the location, time, merchant

name, and amount for all transactions and aggregate the data to daily spending by category and city.

To our knowledge, these are the most comprehensive and fine-scale data on consumer spending in

China in temporal and spatial dimensions, and we are the first to utilize them for academic research.

It is worth noting that during our sample (2013-15), the use of mobile payment (such as WeChat

Pay and AliPay) was limited. The share of mobile payments in China’s total retail consumption

was only 8% in 2015, compared to 44% for bank cards (Kapron and Meertens, 2017).13

Appendix Figure J3 illustrates the spatial pattern of card adoption by plotting the number of

active cards per resident by city in 2015. Card adoption is higher in coastal or high-income cities.

Appendix Table I1 correlates the cross-sectional card adoption rate with city demographics. Adop-

tion is higher in cities with a higher household income and education and a younger population.

Healthcare spending includes transactions at hospitals, pharmacies, and other healthcare facil-

ities (e.g. small health clinics). We exclude transactions exceeding 200,000 yuan ($30,770).14 In

2015, hospitals account for 83.5% of healthcare spending and 56.8% of healthcare transactions.

Different from pharmacies in the U.S., such as CVS or Walgreens, most pharmacies in China only

carry medicine and do not sell daily necessities. Pharmacies account for 6.0% of healthcare spend-

11Of the 1.1 billion individuals above 15 (the minimum age for bank cards), 72% hold at least one bank card, with a
total of 800 million bank-card holders in 2015.

12Merchants are classified by seven major categories and 300 subcategories. The major categories are retail; wholesale;
direct sales; real estate and finance; residential and commercial service; hotel, restaurant, and entertainment; and
education, health, and government service.

13In comparison, spending from bank cards accounts for 55% of U.S. consumer spending in 2012 (Bagnall et al., 2014).
14200,000 yuan ($30,770) is the 99th percentile of transaction values across all categories. Larger transactions are

excluded due to UnionPay’s data protocol that aims to remove fraudulent transactions (a practice called “cash out”).
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ing and 31.0% of healthcare transactions in 2015. The remaining transactions are accounted for by

other healthcare facilities. Within hospitals, we identify People’s hospitals and Children’s hospitals

based on merchant name. People’s hospitals are state-owned general hospitals and tend to be the

largest health care facilities in a city. Each city has at least one People’s hospital, but not all cities

have Children’s hospitals, which accept mostly child patients. People’s and Children’s hospitals

account for 24.1% and 4.2% of total healthcare spending respectively, and 26.2% and 9.0% of

transactions in 2015. Our data account for 31% of total private healthcare spending in 2013 and the

coverage rose to 51% in 2015, similar to the share of bank card transactions in other sectors.

In addition to healthcare spending, we also analyze spending in non-healthcare categories, such

as daily necessities. We follow the United Nations’ Classification of Individual Consumption Ac-

cording to Purpose (COICOP) in defining necessity goods.15 Relative to healthcare spending,

spending on daily necessities is three times as large and transactions three times as frequent. A

unique feature of Chinese consumers’ shopping behavior is their frequent trips to supermarkets for

groceries (often on a daily basis). We therefore use supermarket spending as another proxy for

daily consumption, in addition to spending on necessities. Spending in supermarkets is over four

times as large as healthcare spending in value and five times as frequent in 2015.

To graphically illustrate the relationship between pollution and spending, we plot the log num-

ber of transactions against contemporaneous PM2.5 in Figure 1, after partialling out all other con-

trols (weather, city trend, etc.). We group PM2.5 (residuals) by percentiles and plot the in-group

average of log number of transactions against each percentile of PM2.5. In addition to the aggregate

number of healthcare transactions (top left), we also plot the relationship separately for different

healthcare and non-healthcare categories. PM2.5 has a positive relationship with spending in all

health categories and a negative relationship with non-health spending across nearly all quantiles

of PM2.5. This suggests that elevated air pollution negatively affects health and leads to avoidance

behavior among consumers. We quantify the causal impact in our regression analysis below.

15United Nations’ COICOP defines necessity goods as 1) food and non-alcoholic beverages, 2) alcoholic beverages,
tobacco and narcotics, 3) clothing and footwear, 4) recreation and culture, and 5) restaurants and hotels. We exclude
supermarkets from necessity spending because they sell a large variety of goods other than necessities.
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2.3 Health Insurance and Health Outcomes

Health care in China is financed by government programs, individuals’ out-of-pocket spending, and

commercial health insurance. There are three major public health insurance programs, covering ur-

ban employees, urban non-employee residents, and rural residents, respectively. Through massive

government subsidies and successful public campaigns, China achieved nearly universal health

care coverage in 2011, when 95% of the population was covered through these three government

supported insurance programs, up from 65% in 2009 (Yu, 2015). Commercial health insurance is

rare and accounts for a negligible fraction of national health spending (Choi et al., 2018).

Despite the nearly universal health insurance in China, the coverage is low with high coin-

surance rates and low coverage ceilings that vary across insurance programs, healthcare facilities,

and cities (Meng and Yang, 2015). Only drugs on the National Reimbursement Drug List (main-

tained by the Ministry of Human Resources and Social Security) are covered by China’s public

health insurance programs, some in full (type A drugs) and others partially (type B). In most cases,

individuals can purchase drugs without a doctor’s prescription.

Nearly all covered medical expenses (e.g., hospital visits and drug purchases) require some

individual contributions through either bank card payments (which are included in our database) or

cash.16 In most cases, out-patient care requires payment up front before receiving treatment, while

in-patient care is billed several times a week (Jha, 2014). In light of this, the number of health-

related transactions recorded in our database should capture well the number of visits to healthcare

facilities and serves as a key outcome variable in our empirical analysis.

Bank card transactions do not identify disease diagnoses or treatments associated with the

spending. This may raise concerns over how well the healthcare spending data correspond to

health outcomes. We provide several pieces of evidence that validate the data quality. We first

obtain data on the aggregate number of hospital visits by in-patients, out-patients, and ERs in each

province from the annual China Statistical Yearbook published by the National Bureau of Statistics.

16The fraction of medical expenses that is covered by the government health insurance programs is directly billed on
health insurance cards and goes through a different clearing system from UnionPay.
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This allows us to examine the correlation between our healthcare spending data and national-level

healthcare statistics. Appendix Figure J4 plots the number of card transactions in hospitals against

the number of hospital visits in logarithms at the province-year level for our sample period. There

is a close relationship between these two series with a high correlation coefficient: 0.86 in logs and

0.75 in levels, indicating that the number of card transactions is a good proxy for hospital visits.

Appendix Tables I2 and I3, and Figures J5 and J6 provide further evidence based on two con-

fidential micro-level data sets, including the universe of medical emergency calls in Beijing and

healthcare insurance claims in Ganzhou city, Jiangxi Province. As the capital city, Beijing has a

highly educated population and a high penetration of bank cards. Ganzhou, on the other hand, is

a medium-sized city that is primarily rural. In both cases, there is a strong correlation between

our spending data and micro-level health outcomes. Patterns from these very different examples

suggest that the spending data provide reliable measures of health outcomes. Given the lack of

micro-level data on health outcomes at the national level, our data provide to our knowledge the

only alternative health-related measures that are both granular and have national coverage in China.

2.4 Meteorology Data and Summary Statistics

We obtain meteorological data from the Integrated Surface Database (ISD) hosted by National

Oceanic and Atmospheric Administration (NOAA). The ISD dataset includes hourly measures of

temperature, precipitation, wind speed, and wind direction for 407 monitoring stations in China,

covering most major cities. We match cities with the nearest weather station according to their

geographic coordinates and compute daily temperature and wind speed from a simple average of

the hourly data. ISD’s hourly measure of precipitation suffers from noticeable measurement errors,

so we use daily precipitation from NOAA’s Global Surface Summary of the Day database (GSOD)

instead.17 Daily wind direction is calculated by adding up twenty-four hourly vectors of wind

direction, where the length of each vector is the hourly wind speed.

Table 1 reports the summary statistics for all variables used in our study at the city-day level.

17GSOD reports daily precipitation using Greenwich Mean Time, which is the cumulative rainfall from 8 a.m. Beijing
time to 8 a.m. the next day. We use this measure as our daily precipitation.
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The daily PM2.5 concentration is on average 56 µg/m3, with the inter-quartile range from 27 to 69

µg/m3. The maximum recorded daily PM2.5 is 985 µg/m3. Sixty-seven percent of these city-day

observations record a concentration level that is above the U.S. daily standard of 35 µg/m3. For

healthcare spending, the average daily number of transactions is 7,229 per city, and the average

daily spending is 6.7 million yuan.

3 Empirical Framework

In this section, we first present a flexible econometric model that allows us to estimate the short-

and medium-term impacts of air pollution on healthcare spending. Then we discuss our estimation

strategy and the construction of instrumental variables.

3.1 Flexible Distributed Lag Model

Air pollution has both short- and long-term consequences on healthcare spending. Different from

quarterly or annual data commonly used in the literature, our daily data allow us to characterize

the path of health impacts from both contemporaneous and past air pollution exposure. We use the

following distributed lag model (DL) to capture this relationship:

yit =
k

∑
τ=0

βτ pi,t−τ + xxxitα +ξi +θi · t +ηw + εit (1)

where yit is daily healthcare spending in city i on day t, pi,t−τ is either contemporaneous (τ = 0) or

lagged pollution exposure (τ ≥ 1), and k is the number of lagged pollution variables. We include

a rich set of controls xxxit such as weather conditions, holiday and day-of-week fixed effects, and

seasonality. We also control for city fixed effect ξi, city-specific linear time trend θi · t, and week-

of-sample fixed effect ηw. City fixed effects control for baseline differences across cities, as more

polluted cities tend to have higher health spending. City-specific time trends capture heterogeneous

card adoption rates across cities, given rising card penetration in our sample period. Week-of-the-

sample fixed effects allow for nation-wide temporal variation in spending and air pollution.

The key parameters of interest are βτ ’s, which capture the short- and longer-term causal impacts

of pollution exposure on healthcare spending. The short-term impact of pollution is characterized
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by β0, which captures responses in healthcare spending to a contemporaneous increase in pollution

concentration. The long-term or cumulative impact of pollution is characterized by ∑
k
τ=0 βτ , which

reflects changes in healthcare spending as a result of persistent elevation in past pollution exposure.

Suppose for a moment that there is no measurement error in pollution exposure pi,t−τ and no

omitted variables, two important issues we return to in the next section. Then the DL model can

be estimated using OLS. But linear estimation with a large number of lags is undesirable due to

high autocorrelation among lagged pollution pi,t−τ . The parameter estimates tend to be imprecise

with artificial oscillations, as shown in Appendix Table I7. Alternatively, one can use the average

pollution during a time window (such as the past week or month) as in the following framework:

yit = β p̄it + xxxitα +ξi +θi · t +ηw + εit , (2)

where p̄it =
1

k+1 ∑
k
τ=0 pi,t−τ . While this specification is easy to implement and addresses the issue

of high autocorrelation, it imposes a strong restriction that all lags of pollution within the window

have a constant impact on spending and does not allow for dynamic time-varying impact. We

present results from this specification as a robustness check in Section 4.2.

To allow for flexible and smooth longer-term impacts and at the same time dealing with the

issue of high autocorrelation, we extend Almon (1965) and specify βτ ’s in equation (1) as cubic

B-spline functions of time with z segments, following Corradi (1977).18 The intuition is that any

smooth function (here βτ can be treated as a function of time) defined on a closed interval [a,b]

can be approximated uniformly closely by basis splines. To illustrate our approach, consider the

example of cubic B-splines with one segment which amounts to a simple 3rd order polynomial:

βτ = γ0 + γ1τ + γ2τ
2 + γ3τ

3, (3)

where the contemporaneous effect of pollution on spending is captured by β0 = γ0, the effect of

yesterday’s pollution is β1 = γ0 + γ1 + γ2 + γ3, and the effect of pollution from τ days’ in the past

18Almon (1965) first proposed approximating the lag coefficients with polynomial functions. Poirier (1975) and Cor-
radi (1977) suggested using spline functions, which impose weaker restrictions on the lag coefficients while keeping
the number of parameters small. Zanobetti et al. (2000) and Schwartz (2000) apply these methods to estimate the
non-linear impact of pollution on mortality. Appendix B.3 further discusses related literature.
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is βτ = γ0 + γ1τ + γ2τ2 + γ3τ3. Plug (3) into (1) and rearrange terms, we have:

yit = γ0v1,it + γ1v2,it + γ2v3,it + γ3v4,it + xxxitα +ξi +θit +ηw + εit , (4)

where v1,it = pit + pi,t−1 + pi,t−2 + ...+ pi,t−k, v2,it = pi,t−1 +2pi,t−2 + ...+kpi,t−k, v3,it = pi,t−1 +

22 pi,t−2 + ...+ k2 pi,t−k, and v4,it = pi,t−1 +23 pi,t−2 + ...+ k3 pi,t−k, respectively. These four terms

in equation (4) now constitute our key regressors. The first term, v1,it , is the sum of past pollution

exposure. The second to the fourth terms, v2,it , ...,v4,it , are weighted sums of past exposure with

the weights being polynomial terms of time. With this reformulation, we only need to estimate

four coefficients {γi}3
i=0 rather than k+1 coefficients (the number of lags plus current day). Once

we obtain OLS or IV estimates and standard errors of γ’s, we can recover βτ ’s using equation

(3), and use the delta method to estimate standard errors for βτ ’s. Appendix B.1 describes how to

extend this to the more general case where there are multiple segments and the coefficients βτ are

piecewise polynomials in τ .

In summary, the flexible distributed lag model transforms a series of many lagged pollution

variables {pi,t−τ}k
τ=0 into a small number of {v·,it}’s, which are weighted sums of past pollution

exposure with the B-spline functions of time as weights. This approach has several advantages over

competing distributed lag models, the most popular one being the geometric decay model. First,

these new regressors {v·,it} exhibit much less multicollinearity than lagged pollutions {pi,t−τ}k
τ=0.

Second, this model allows for much more flexible time-series patterns of the marginal impact βτ

than geometric decay models. Third, it is straightforward to impose additional restrictions that

are generated by economic theory or reflect prior knowledge of the data generating process. For

example, if tomorrow’s pollution should not affect current spending, then β−1 = 0. If pollution

prior to k lags has no effect, then βk+τ = 0,∀τ ∈ N. These constraints can be imposed individually

or jointly and tested as linear restrictions. Finally, we allow for an arbitrary correlation between the

contemporaneous error term εit and past error terms, which is difficult in geometric decay models.

Our benchmark specification includes 90 daily lags (k = 90) and characterizes the the marginal

impact βτ in each month by a separate cubic polynomial. This corresponds to a cubic B-spline with

three segments, which leads to six regressors {v1,it , ...,v6,it} and six γ parameters to be estimated.
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We examine robustness to different choices of lags and spline segments in Section 4.2.

3.2 Identification

3.2.1 Sources of Endogeneity

There are multiple factors that would render the OLS estimates as discussed above inconsistent.

As recognized in the recent literature on estimating the causal impact of air pollution on health

(Currie and Neidell, 2005; Arceo et al., 2015; Knittel et al., 2015; Schlenker and Walker, 2016;

Deryugina et al., 2019), the pollution exposure variable likely suffers from measurement errors.

This is because pollution levels vary across locations within a city and pollution readings from

different monitoring stations are averaged to the city level. For example, among the 9 monitoring

stations in the urban core of Beijing, the average difference between the maximum and minimum

pollution level in a day is 35 µg/m3 in 2014, a sizable gap given the daily average of 87 µg/m3

at the city level. Since population is unevenly distributed within a city and the spatial distribution

of monitoring stations does not align with residential areas, the arithmetic mean across all stations

within a city may not accurately reflect the city population’s pollution exposure. An ideal measure

would be the population-weighted average of local air quality, but this is impractical due to the

lack of air pollution data at the finer spatial level (e.g., city block or zip code) and the fact that

many monitoring stations are located outside of population centers. In addition, our daily pollution

measure is a simple average of hourly measurements and abstracts away the temporal variation. To

the extent that these measurement errors are classical, OLS estimates would suffer from attenuation

bias.19 City fixed effects are unlikely to adequately address these measurement errors, which vary

over time. For example, on days with more local pollution in densely populated areas, the difference

between the population’s pollution exposure and the simple average pollution will be larger.

Another source of endogeneity is the presence of unobservables correlated with pollution. De-

spite our rich set of controls for weather and local conditions (e.g., city specific time trend and

19Satellite data on Aerosol Optical Depth (AOD) offer an alternative measure of the ground level pollution with finer
spatial resolutions (e.g., 3 km by 3 km from Terra satellite and 10 km by 10 km from Aqua) (Zou, 2021). However,
there are a lot of missing values at the daily level due to cloud coverage.
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seasonality), there are sources of temporal variation that cannot be adequately controlled for. For

example, permanent local shocks to healthcare spending, such as income shocks, could be cor-

related with economic activities and thus with air quality. Temporary local shocks, such as major

sport and political events and traffic congestion, may affect both air quality and healthcare spending

(and consumer activities in general).20 These unobservables that are not absorbed by our location

fixed effects and trend/seasonality interactions would render the air quality variable endogenous.

3.2.2 IV Construction

To address these concerns, we construct instruments by exploiting the spatial spillovers of PM2.5

due to its long-range transportability. PM2.5 particles are light, can travel at a speed of 10 mph, and

often reside in the atmosphere for 3-4 days (Zhang et al., 2015; Wang et al., 2018a). Their region

of influence is determined by wind speed and direction. Based on atmospheric modeling, Zhang

et al. (2015) document significant regional pollutant transport in China. For example, nearly half

of the pollution in Beijing originates from sources outside the municipality. These results suggest

that PM2.5 from other cities could serve as exogenous shocks to the pollution level for a given city.

We use a parsimonious model to apportion observed pollution levels into components from

local and non-local sources (see Appendix C for more details). The pollution level of city i in time

t, pit , is a function of past pollution and pollution from other cities:

pit = θ1 pi,t−1 + ∑
j 6=i,di j≤r

p+j→i, t︸ ︷︷ ︸
PM2.5 imported

from nearby cities

+ ∑
j 6=i,di j>r

p+j→i, t︸ ︷︷ ︸
PM2.5 imported

from distant cities

+µit

where θ1 captures the amount of pollution that is carried over from the previous day (which is

affected by local meteorological conditions), p+j→i, t denotes the amount of PM2.5 pollutants in

city i at time t that is originated from city j, di j represents the distance between cities i and j, r

is the radius of a buffer zone, and µit is the error term. The total amount of PM2.5 imported by

city i is the sum of ∑ j 6=i,di j≤r p+j→i, t (pollution imported from cities within the buffer zone) and

20An unexpected increase in congestion on a given day (e.g., due to accidents or weather conditions) raises air pollution
and at the same time reduces healthcare spending (residents might prefer to stay at home on more congested days).
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∑ j 6=i,di j>r p+j→i, t (pollution imported from cities outside the buffer zone).

The contribution of non-local sources to the pollution level of a given city could be affected

by a host of meteorological conditions and is the subject of sophisticated air quality modeling.21

We use the following parsimonious model to capture the key feature that PM2.5 pollutants dissipate

over time and across space as they move:

p+j→i, t = max[cosΦ ji,0] · p j,t−si jt · f (di j,w j,t−si jt ,wi,t), (5)

where p+j→i, t is the amount of pollution that enters city i on day t, having originated from city j

on day t − si jt . Pollution decays over time as it travels, and only part of the pollution from city

j enters the atmosphere of city i. This is represented by f (di j,w j,t−si jt ,wi,t) ∈ [0,1], which is a

function of the distance between the two cities (di j), weather conditions in the source city when

pollution is generated (w j,t−si jt ), and weather conditions in the destination city when pollution

enters its atmosphere (wi,t). To account for the effect of wind direction and speed, we invoke a

vector decomposition. Let Φ ji denote the angle between the wind direction and the direction from

city j to city i, and v j,t−si jt the wind speed in city j. The amount of pollutants carried toward city i

from city j is assumed to be cos(Φ ji)p j,t−si jt at speed cos(Φ ji)v j,t−si jt . Note that p+j→i, t is zero if

cos(Φ ji) is negative: when the wind blows away from city i, pollution from the source city j should

not affect city i. The number of days it takes pollutants to travel from city j to city i, si jt , is rounded

to the next smallest integer: si jt =

⌊
di j

cos(Φ ji)v j,t−si jt

⌋
. As an example, Appendix Figure J7 illustrates

graphically all subvectors of pollutants that were blown towards Beijing on Dec. 5, 2013.

We now describe how to construct instruments using the above model. The decay function

f (di j,w j,t−si jt ,wi,t) in equation (5) is unknown. We approximate it by a set of L polynomial func-

tions {ul(di j,w j,t−si jt ,wi,t)}L
l=1. The total amount of pollution imported from cities outside the

buffer zone, p̂ f ar
it , is the following:

p̂ f ar
it = ∑

j:di j>r
p+j→i, t = ∑

j:di j>r
max[cosΦ ji,0] · p j,t−si jt ·

L

∑
l

γlul(di j,w j,t−si jt ,wi,t) =
L

∑
l

γlZl
it

21Meteorological conditions play a key role in PM2.5 diffusion (Seibert and Frank, 2003 and Wang et al., 2019).
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where
Zl

it = ∑
j:di j>r

max[cosΦ ji,0] · p j,t−si jt ·ul(di j,w j,t−si jt ,wi,t), l = 1, ...,L (6)

Our instruments for current day pollution pit is the set of {Zl
it}L

l=1. These are valid instruments

since they only depend on the weather in city i at time t, which we control for in our regressions,

and on pollution and weather variables in cities outside the buffer zone at time t− si jt , which are

uncorrelated with city i’s spending shocks by our identification assumption. Equation (6) makes it

explicit that this strategy exploits a number of restrictions to construct powerful IVs. For example,

if the prevailing wind conditions are such that it takes two days for the pollution generated in city

j to reach city i, we would expect p j,t−2 instead of p j,t or p j,t−1 to affect pi,t . Our instrument Zit is

a function of p j,t−si jt , where si jt is the number of days it takes for the pollution generated in city j

to arrive in city i. As such, the calculation of Zit properly dates the relevant pollution source in the

origin city p j,t−si jt and aggregates over all origin cities.

Set of IVs In the baseline specification, we use 15 second-order polynomial terms {ul(·)}L=15
l=1 to

flexibly approximate the decay function: 1) constant, the inverse distance, and origin city’s weather

(wind speed, precipitation, temperature) (5 terms); 2) the quadratic terms of the inverse distance

and origin city’s weather (4 terms); 3) the product of the inverse distance and the origin city’s

weather (3 terms); 4) the destination city’s weather (wind speed, precipitation, temperature) (3

terms). Hence, we have 15 instruments {Zl
it}L=15

l=1 for current day pollution pit .

As shown in Section 3.1, the flexible distributed lag model transforms many lagged pollution

variables {pi,t−τ}τ into a few {v·,it}’s, which are weighted sums of past pollution exposure with

B-splines as weights. The instruments for these endogenous variables are constructed analogously,

except that the lagged endogenous pollution variables are replaced with the corresponding lagged

vector of exogenous IVs {Zl
i,t−τ
}L=15

l=1 . There are fifteen IVs for each v·,it and a total of 90 instru-

ments in our main specification.22 Appendix C provides more details.

Identification Assumptions Our approach that exploits PM2.5’s region of influence is analogous

to the source-receptor matrix constructed by the US EPA for air pollution prediction. The instru-

22A cubic B-spline with three segments has six B-spline terms and hence six endogenous variables {v1,it , ...,v6,it}.
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ments we construct leverage variation in PM2.5 in non-local sources, wind patterns, and other me-

teorological conditions such as temperature and precipitation in both the source cities and the desti-

nation city, which have been shown to affect the long-range transport of PM2.5. These instruments

provide ample variation that allows us to simultaneously identify the short-term and medium-term

impacts of pollution and quantify the time-path of these impacts. An alternative strategy involves

using variations in local wind direction to estimate the health impacts of particulate matter pollution

(Deryugina et al., 2019). Although changes in local wind direction are more plausibly exogenous

and well suited to identifying the short-run impact of pollution, they may lack enough variation to

explain changes in both current and lagged pollution variables. As we illustrate in Section 4.2, IVs

that only use variation in wind direction (interacted with region dummies) fail to pass the weak IV

tests and lead to insignificant estimates, though the estimated impact of PM2.5 on aggregate health

spending is broadly similar to our baseline estimates.

Our identification assumption is that pollution shocks (e.g., economic activities) in regions out-

side the buffer zone are uncorrelated with local shocks to spending. This assumption is violated if

spending shocks (e.g., the high temperature that leads to more hospital visits as well as increased

demand for electricity) in city i affect production activities in other cities (e.g., electricity gener-

ation) outside the buffer zone, which in turn affect the pollution level in city i. To the extent that

economic shocks in city i affect production and hence pollution in other cities, this should induce

correlation between the error term εit and future pollution levels rather than lagged pollution levels

in other cities. In contrast, our instruments are weighted sums of lagged pollution levels in distant

cities, where the weights are the inverse distance and meteorological conditions in both the source

and receptor cities. In addition, averaging over the exogenous variation in wind speed and direction

across a large number of source cities should reduce such correlations, if any.

We assume that pollution imported from regions outside the buffer zone is uncorrelated with

measurement error in local pollution exposure. As discussed earlier, the difference between population-

weighted average pollution and the city-wide average pollution leads to measurement error in our

independent variable. Thus, changes in the measurement error over time mainly arise from within-
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city variation in local sources of air pollution. For example, the distribution of vehicular emissions

across a city varies over time due to changing traffic patterns, leading to variation in the difference

between the simple average of air pollution and the population-weighted average. By contrast, the

variation in imported pollution over time from faraway, non-local sources is a function of the aver-

age pollution at the source cities and weather conditions determining the diffusion of pollutants and

is unlikely to be correlated with measurement error in local pollution. Empirical evidence provided

at the end of Section 4.2 corroborates this assumption.

To further address potential concerns on the validity of our IVs, we proceed in three ways.

First, we show in section 4.2 that results are robust to different radii of the buffer zone. Second, we

construct an alternative set of IVs using the historical average (time-invariant) level of air pollution

in source cities, rather than the observed lagged pollution that could be subject to regional economic

spillovers. The within-city variation of these IVs is solely driven by wind patterns and other weather

conditions rather than time-varying pollution levels in source cities, hence should not be correlated

with unobserved economic shocks in the destination city. The results from this specification are

similar to the benchmark estimates. Third, we include the average PM2.5 in other cities outside the

buffer zone but within the same region as an additional regressor to control for regional spillovers

in economic activities. This has little impact on the parameter estimates.

Finally, our identification strategy is different from the regression discontinuity (RD) approach

based on the Huai River heating policy used in Ebenstein et al. (2017) and Ito and Zhang (2018).

The RD design exploits the long-term cross-sectional variation in pollution and is better suited to

study long-term impacts, such as on mortality. This study focuses on the short- and medium-term

impacts, and our IV approach is designed to leverage the data’s rich spatial and temporal variations.
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4 Empirical Results

4.1 Impact of Pollution on Health Spending

We now describe the empirical analysis of air pollution’s effect on health spending. We use the

logarithm number of transactions as the dependent variable rather than the value of transactions,

following the literature that uses similar transaction-level purchase data (Einav et al., 2014). As ex-

plained in Section 2.3, the number of transactions is a good proxy for visits to healthcare facilities.

In Appendix I, we report results using the value of transactions as the dependent variable. They are

similar in magnitude to those based on the number of transactions but less precise. This is partly

because the distribution of healthcare spending is right-skewed, with many large transactions (e.g.,

surgeries) that are unlikely caused by air pollution in the short run. While our baseline specification

utilizes the total number of transactions as the dependent variable, the estimates are very similar if

we instead use the number of transactions per capita, as discussed in Section 4.2.

All regressions include city fixed effects to control for time-invariant unobservables, week-

of-the-sample fixed effects to control for nationwide shocks, and city-specific time trend and city-

specific seasonality (i.e., interactions of city fixed effects and quarterly dummies) to control for city-

level trends in economic growth and seasonal diseases. We also add fixed effects for state holidays,

working weekend,23 day of the week, as well as weather variables to control for their direct effects

on spending. For example, people may reduce non-urgent hospital visits during holidays or on

raining days. All standard errors are clustered at the city level.

First-Stage Results To address the issue of measurement errors and endogeneity, we instrument

PM2.5 using pollution imported from distant cities outside the buffer zone as discussed in Section

3.2. To assess the strength of instruments, we follow the best practice as suggested in the weak IV

literature. When there is one endogenous regressor, we follow Andrews et al. (2019) and report

the effective F-statistic of Olea and Pflueger (2013) (which is robust to heteroskedasticity). The

23Weekends near multi-day holidays are usually swapped with weekdays next to the actual holidays to create a longer
holiday. As a result, businesses and schools treat those weekends as working weekends.
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benchmark specification of our distributed lag model has six endogenous variables and a total

of 90 instruments. To our knowledge, the literature on weak instruments has not yet developed

formal methods for detecting weak identification in the presence of multiple endogenous regressors

and non-homoskedastic errors. As such, we report the Kleibergen-Paap Wald rk F-statistic that is

clustered at the city level in regressions with multiple endogenous regressors.

Appendix Table I4 reports the first-stage result where we regress pit on different sets of IVs.

The signs for included IVs are expected: pollution is lower in holidays and decreases with local

precipitation and wind speed. In Column (1), the only excluded instrument is a simple sum of PM2.5

from distant cities traveling toward the destination city. Column (2) takes into account that PM2.5

decays as it travels and uses the sum of PM2.5 from distant cities weighted by the inverse distance

and weather variables of the origin cities as excluded IVs. This corresponds to a linear decay

function. The coefficient estimates suggest that both higher temperatures and greater precipitation

in origin cities lead to a faster decay of PM2.5. In addition, the further PM2.5 has to travel, the more

it decays. As a result, the distance weighted sum of PM2.5 has a much higher predictive power of

local pollution than a simple sum of pollution from origin cities.24 Column (3) allows for a second-

order polynomial decay function in the inverse distance and weather conditions in the origin cities,

as well as weather conditions in the destination city, leading to a total of fifteen instruments as

discussed in Section 3.2.2. We provide further evidence in Appendix Section C that variation in the

instrumental variables systematically explains changes in the average PM2.5 levels in destination

cities. For example, Figure J8 shows that for the coastal city of Shanghai whose polluting cities

are located to its west, the instrumental variables correctly predict that pollution is higher on days

when wind blows from the west to the east.

The effective F-statistic is 161 and 112 in Columns (2) and (3), respectively. They exceed the

critical value by a large margin and indicate a strong first stage. Our preferred specification is

Column (3) which allows for a more flexible decay function of PM2.5 than Column (2), though the

estimated health impacts are similar with either.

24The raw correlation between local pollution and distance-weighted pollution from origin cities is 0.21, while the raw
correlation between local pollution and a simple sum of pollution from origin cities is close to 0.
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Short-term Impacts Our empirical analysis begins with the current-day PM2.5 as the only key

variable of interest, i.e., k = 0 in Equation (1). The coefficient estimate on current-day PM2.5, β0,

captures the effect of both current-day and past pollution exposure, the latter of which are correlated

with current-day pollution but omitted from the regression. As a result, β0 is not the marginal

impact of the current-day exposure on spending. Nevertheless, we can view the estimate as a

short-term impact. Appendix Tables I5 and I6 report the OLS and IV estimates of the short-term

impacts, respectively. According to the IV estimates, a 10 µg/m3 increase in current-day PM2.5

is associated with a 0.65% contemporaneous increase in transactions in the aggregate health care

sector. The effect of air pollution on spending at Children’s hospitals is the largest among different

health care categories and is nearly twice as large as that for the overall healthcare spending.

The IV estimates of the health impact are several times as large as their OLS counterparts,

which is common in this literature (Schlenker and Walker, 2016; Ebenstein et al., 2017; Deryugina

et al., 2019).25 The smaller OLS estimates are consistent with the attenuation bias due to (classical)

measurement errors in PM2.5. The downward bias could also be driven by temporary local shocks,

such as major local events, that are positively correlated with air pollution but negatively correlated

with healthcare spending (more outdoor activities and fewer hospital visits).

Longer-Term Impacts Exposure to PM2.5 could have dynamic longer-term health impacts that

are nonlinear. Directly including a large number of lagged PM2.5 suffers from high autocorrela-

tion. Appendix Table I7 reports coefficient estimates from including up to 5-day lags of PM2.5 in

equation (1). Although these results indicate that the effect of PM2.5 persists beyond one day, the

high autocorrelation makes it difficult to tell apart the effect of PM2.5 on consecutive days. As such,

many coefficients are imprecise with oscillating signs. To address this issue, we employ the flexible

distributed lag model discussed in Section 3.1 and allow pollution impacts to follow a smooth path.

25Schlenker and Walker (2016) use runway congestion at airports on the US East Coast as exogenous variation to
examine the contemporaneous health impact of air pollution exposure for communities near large airports in Cali-
fornia. Their 2SLS estimates are 6-10 times larger than the OLS estimates. Ebenstein et al. (2017) use a regression
discontinuity design based on the Huai River policy to examine the long-term impact of PM10 on mortality. Their
RD estimates are 2-3 times as large as the OLS estimates. Deryugina et al. (2019) study the mortality and medical
costs of PM2.5 in the US and find the IV estimates 6 to 17 times larger than OLS estimates.
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Appendix Table I8 reports the cumulative effects of elevated PM2.5 concentration over different

time periods, ∑
k
τ=0 βτ , from OLS regressions. Our benchmark specification incorporates daily

pollution exposure for the past three months (90 lags). Effects beyond 90 days are modest and

imprecisely estimated, thus excluded from the cumulative effects. A one-day surge of 10 µg/m3 in

PM2.5 concentration increases today’s transactions in all healthcare facilities by 0.03%. A medium-

run (three-month) elevation of 10 µg/m3 raises the number of transactions by 0.86%, eight times as

large as the effect reported in Appendix Table I5 when only the contemporary PM2.5 concentration

is included in the regression. There is a statistically significant negative impact on necessities and

supermarket spending within two weeks, but not in the long run.

To deal with measurement errors and the endogeneity in current and lagged PM2.5, we use IVs

discussed in Section 3.2 and present results in Table 2. Several important findings emerge. First,

the estimated 2SLS longer-term impacts of PM2.5 across all healthcare categories are positive and

much larger than the short-term impact, consistent with the comparisons from the OLS estimates.

Specifically, a 10 µg/m3 increase in PM2.5 concentration over the past 90 days raises the number

of transactions in the aggregate healthcare sector by 2.65%. Second, the impact on Children’s

hospitals is the largest and more than twice as large as the impact on aggregate healthcare spending,

consistent with the fact that children are among the most vulnerable groups. Pharmacy is the second

most responsive healthcare category. When elevated air pollution aggravates symptoms for people

with respiratory problems, they may go to pharmacies without visiting hospitals. Third, the effects

on daily necessities and supermarket spending are all negative and appear to be short-lived. Finally,

the robust F-statistic varies from 38 to 48, suggesting that weak identification is unlikely to be a

concern in our setting.

To examine how the impact on spending changes over time, Figure 2 plots the path of the

cumulative effects of past pollution exposure across different categories. Solid lines (and solid

segments) indicate significance at the 5% level. The optimal number of lags should in theory differ

across categories. For example, the effect of pollution on non-healthcare categories appears to

be short-lived, while for children’s hospitals it could last for more than three months. To keep
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the results comparable, we impose the same lag structure on all categories. Panel (a) depicts the

cumulative effect for aggregate health spending and spending in Children’s hospitals. Consistent

with Table 2, the cumulative effect increases over the 90-day window and is stronger (in percentage

terms) for spending in Children’s hospitals. For aggregate health spending, the cumulative effect

appears to stabilize at three months, which is confirmed in the robustness analysis below.

In contrast, air pollution reduces spending on necessities and in supermarkets in the short term.

The cumulative effect appears to peak at around two weeks, reduces in magnitude afterward, and

becomes imprecise past one month. One explanation for the short-term reduction in non-health

spending is budget constraints: if consumers have to spend more on heath care to mitigate the neg-

ative health impact of air pollution, they may have less to spend on non-health-related categories.

However, the temporary reduction we find is inconsistent with the budget constraint hypothesis,

since a sustained increase in healthcare spending would lead to a sustained reduction in necessi-

ties with a fixed budget. Instead, our results lend support to the hypothesis of avoidance behavior,

whereby consumers postpone or reduce shopping trips to reduce pollution exposure in response to

poor air quality. This is consistent with recent literature (Mu and Zhang, 2016; Ito and Zhang, 2018;

Sun et al., 2017). Appendix E provides additional evidence that individuals engage in avoidance

and that expectations about future air pollution affect current healthcare and non-health spending.

Our results suggest that a 10 µg/m3 increase in PM2.5 would raise health-related transactions

by 2.65% in the medium term. In terms of the value of transactions, the effect is 1.5% over the

out-of-pocket expenses (Appendix Table I9). These estimates are somewhat less precise than those

based on the number of transactions, driven by the larger noise inherent in the value of healthcare

spending. The smaller impact on the transaction value makes intuitive sense since illnesses due to

air pollution likely cost less to treat than other diseases on average.26 In our analysis in Section 5.1,

we use the estimates on transaction value to bound the healthcare cost of pollution.

26Average hospital spending is 6140 yuan ($944) for all in-patient visits versus 4109 yuan ($632) for in-patients treated
for respiratory diseases in 2013 (National Health Commission, 2013).
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4.2 Robustness Checks

We conduct an extensive set of robustness checks to illustrate that the results discussed above hold

across different empirical specifications and choices of IVs.

Choices of Instruments We have carried out a series of robustness analyses to examine the role

of the instruments. Panel A of Table I10 constructs an alternative set of IVs using the historical

average (time-invariant) level of air pollution in source cities, rather than the observed lagged pol-

lution that could be subject to regional economic spillovers. The within-city variation in these IVs

comes purely from changes in wind and weather patterns, and thus the IVs should be uncorrelated

with local unobserved economic shocks after controlling for city fixed effects. Though the IVs are

not as strong as those in the main specification as indicated by a reduction in the F-statistic, the

estimated effect of pollution on healthcare spending is similar to the benchmark specification.

A subset of the instruments depends on the destination city’s weather. Panel B in Table I10

drops instruments that are functions of the destination city’s weather so that none of the IVs uses

information related to local conditions. The estimated aggregated health impact is 2.91%, slightly

larger than our baseline result of 2.65%. Panel C of Table I10 drops the following large cities:

Beijing, Shanghai, Guangzhou, Shenzhen, Wuhan, Chongqing, Chengdu, and Nanjing. Due to su-

perior medical facilities in these large transportation hubs, these cities receive a large number of

patients from other areas. If some out-of-town patients come from areas that export pollution to

these major cities, this could lead to a correlation between the instruments and unobserved health-

care spending shocks. The estimated aggregated health impact is 2.25%, somewhat lower than our

baseline result, though the difference is insignificant statistically.

Measurement Error and further tests of IV validity Our identification assumption is that the

IVs are uncorrelated with the measurement error, which arises from local sources of pollution.

Here we provide evidence that the instrumental variables primarily reflect variation in distant and

non-local sources of air pollution and are uncorrelated with the measurement error.
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We first examine how the strength of the first-stage differs with wind speed. If the instruments

are driven by local sources of air pollution, then our first-stage should be strongest on days with

lower wind speeds, since PM2.5 is more likely to be blown away from the local city to other cities

on days with high wind speeds. However, Appendix Table I11 shows that the opposite is the case:

the first-stage F-statistic is larger on days with higher wind speed.27

Next, we divide the cities in our sample into two different subgroups, based on their contribution

towards their province’s total dust emissions in 2012.28 In cities where dust emissions are high (as a

share of the provincial total), local sources likely account for a larger share of overall air pollution.

Thus, if our instruments primarily reflected local sources, then the first-stage would be stronger in

cities where dust emissions are higher. Instead, we find that the first-stage F-statistic is smaller for

cities with high dust emissions than for cities with low dust emissions (Appendix Table I12).

Additional Controls The next set of robustness analysis includes various additional controls.

Panel A in Table 3 reports estimates controlling for other pollutants including O3, SO2, NO2, and

CO. Emission sources such as electricity generation and transportation produce both particulate

matters and other pollutants which also have harmful health impacts, though our IV strategy should

address this to some extent since it leverages the long-range transport property of PM2.5, which is

different for other pollutants, especially O3 and CO. Results with these four additional pollutants

are similar to those in Table 2 for both healthcare and non-healthcare spending categories.29

To address potential spillovers in regional economic activities, Panel B in Table 3 includes as a

regressor the average level of PM2.5 in period t of cities in the same region but outside the buffer

zone.30 If regional economic activities have systematic spillovers beyond the buffer zone, one

might be concerned with the exogeneity of our IVs: local unobservables could be correlated with

27This is similar to what Deryugina et al. (2019) find using instruments based on changes in wind direction.
282012 is the latest year for which we have dust emissions data.
29The correlation coefficient between daily levels of PM2.5 and O3, SO2, NO2, and CO is -0.13, 0.55, 0.66, 0.03,

respectively. While we directly control for these pollutants in addition to PM2.5 in our robustness checks, we do
not address the potential endogeneity in these pollutants. Therefore, our estimated impact of PM2.5 may reflect the
impact of other pollutants. Disentangling the impacts of different pollutants is an important gap in the literature.

30We follow the National Bureau of Statistics’ classification that groups provinces into seven regions: East, North,
Mid, South, Southwest, Northwest, and Northeast.
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economic activities in other cities, which are in turn correlated with pollution levels in other cities.

Including PM2.5 of cities in the same region directly controls for economic activities in other cities

and delivers similar results as those in the benchmark specifications. In Appendix F, we provide

further evidence that our results are unlikely to be biased by spillovers in economic activities. There

exists little correlation between local economic activity and economic activity in cities outside the

buffer zone once we include the full set of controls and fixed effects. Our main estimates are also

robust to controlling for economic activity in regions outside the buffer zone.

Card penetration is growing rapidly over time during our sample period, which raises a concern

that our results might be driven by uneven rates of card adoption across cities. The city-specific

time trends in our baseline specification should capture this. Panel C of Table 3 further controls

the annual number of active cards and the annual number of point-of-service terminals in each city.

Including these variables has little effect on the estimated impacts of PM2.5.

Finally, Appendix Table I13 shows that adjusting for population size by using the number of

transaction per capita as the dependent variable leads to similar results.

Specifications Using Average Pollution Our flexible distributed lag model delivers smooth marginal

impact estimates of past pollution on current-day spending. The robustness checks presented in Ta-

ble I20 illustrate that our results are not driven by the B-spline choices. To further address concerns

over the functional form assumption, we estimate the more conventional specification in Equation

(2) that uses the average pollution during a certain time window (e.g., current day + the past week)

as the key variable of interest. While the specification may appear to be less restrictive than the

flexible distributed lag model, it actually imposes a strong restriction that the marginal impact of

lagged daily pollution on current-day spending is constant within the specified time window. The

epidemiology literature has documented hump-shape (nonlinear) responses to air pollutants due

to either normal physiological considerations or behavioral factors such as harvesting (Zanobetti

et al., 2000; Schwartz, 2000). On the one hand, the impact of air pollution on the respiratory sys-

tem could take time to manifest. On the other hand, patients may postpone hospital visits until

the symptoms are fully developed or cannot be treated by home remedies. Figure 2 corroborates
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these findings in the epidemiology literature and indicates that the marginal impact of lagged daily

pollution on healthcare spending is unlikely to be constant over time.

Nonetheless, Appendix Table I14 presents the IV results for Equation (2) across several win-

dows: current day, a week, a month, two-months, and 90 days. While the overall patterns are

broadly consistent with those from the more flexible model in Table 2, the estimates from the re-

strictive model over current-day are substantially larger than those in our baseline specification

across all health categories, while the estimates over the 90-day period are smaller. These dif-

ferences are driven by two considerations. First, when pollution exhibits serial correlation, the

estimated impact for the average pollution over a given window also captures the impact of pollu-

tion exposure in earlier periods. Second, restricting lagged pollution to have a constant impact on

health spending could either overestimate or underestimate the true effect.

Additional Robustness Checks Appendix D discusses several additional robustness checks. Our

results are robust to different choices of lag length, B-spline segments, and buffer zone radius in

constructing the IVs. We conduct a placebo test that randomizes wind direction and speed, showing

that without the exogenous variation provided by changes in wind direction and speed, the IVs

become weak. We also report results using alternative IVs proposed in the literature that rely only

on wind direction in destination cities. These IVs also suffer from a weak first-stage, which makes

it difficult to identify the medium-term impact of air pollution. Finally, our results are robust to the

inclusion of more flexible controls of meteorological conditions and that the effects of air pollution

are similar for cities where pollution monitoring began earlier.

In sum, our extensive list of robustness checks confirms that the results in our main specification

are not driven by particular functional form assumptions or a specific set of instruments. Rather,

our results hold across a myriad of specifications we have examined. Next, we examine effect

heterogeneity across different pollution and income levels.
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4.3 Nonlinearity and Heterogeneity

One concern regarding the external validity of the benefit-transfer approach is the potential nonlin-

earity of the dose-response function. The pollution level observed in developing countries such as

China and India is far greater than the prevailing level in developed countries that are studied in the

literature. Linear projections in the benefit-transfer approach could either under- or over-estimate

the health costs of air pollution in developing countries if the underlying effect is nonlinear (World

Bank, 2007). Despite its important implications, there is a lack of empirical evidence on the nature

of nonlinearity of the dose-response function (Lelieveld and Poschl, 2017). The rich spatial and

temporal variation in our data allows us to examine the health impacts of PM2.5 for a wide range of

pollution levels.

To capture nonlinearity, we include the quadratic term of PM2.5 in addition to its linear form.31

Appendix Figure J9 plots the cumulative marginal effect (∑τ βτ ) over three months (as well as one

and two months) against pollution level. The cumulative impact on healthcare spending increases

in PM2.5, but the overall nonlinearity of the health impact does not appear pronounced. Based on

this finding, we extrapolate our estimates across a wide range of pollution levels in evaluating the

pollution’s healthcare cost in China (Section 5).

Appendix Figure J10 examines the impact of air pollution across cities with different per capita

income. In 2015, China’s average annual disposable income per capita varied from 12,000 to

53,000 yuan across cities, with an average of 25,530 yuan. Pollution’s impact on healthcare is

largest in poor cities and smaller in richer cities. This may be driven by limited avoidance behavior

(e.g., use of air purifiers) among low-income households and a lack of preventive healthcare in poor

cities. While the differences across income levels could be economically meaningful, the evidence

is suggestive given the statistical insignificance of income coefficients (Appendix Table I15).

31To conserve the number of parameters, we use one-segment instead of three-segment B-splines, since cumulative
effects are similar across different segments (Section 4.2). The impact of past pollution pi,t−τ is defined as:

βτ(τ,w|γγγ,,,σσσ) = (σ1w+σ2w2)+(γ0 + γ1τ + γ2τ
2 + γ3τ

3)

where σ1w+σ2w2 captures heterogeneity and allows the intercept of βτ to vary across different levels of w. The rest
of the estimation follows the linear model specified in Equation 4. Appendix Table I15 reports coefficient estimates.
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We have also estimated heterogeneity across seasons and years (Appendix Table I16). Most

of the heterogeneity coefficients are statistically insignificant, except for the coefficient on winter,

suggesting that health spending is more responsive to pollution in winter than in other seasons.

This is consistent with results on the nonlinearity analysis, as pollution peaks in winter and higher

pollution invokes a larger marginal response.

5 Healthcare Cost of Air Pollution

In this section, we estimate the healthcare cost of PM2.5 in China and compare it with the mortal-

ity cost estimated from the literature. It is important to note that the impact of particulate matter

pollution on health spending will generally understate the welfare impact of morbidity. In addi-

tion to increased healthcare costs, individuals who fall sick due to air pollution also suffer from

reduced productivity (e.g., sick days) and reduced quality of life. Moreover, individuals may en-

gage in costly avoidance behavior to reduce exposure to air pollution, as shown in Appendix E.

Since avoidance behavior is a response to pollution (i.e., an outcome), rather than an unobserved

confounding factor, the presence of avoidance behavior does not bias our estimates per se. It does,

however, change the interpretation of the results. Our estimates provide the healthcare cost of pol-

lution conditional on defensive behaviors undertaken by individuals, which is different from (and

in general lower than) the morbidity cost of pollution in the absence of any avoidance behavior.

5.1 Healthcare Cost

To better understand the magnitude of our estimates, we first benchmark our results with the find-

ings in the related literature in Appendix Table I17. Our preferred specifications show that a 10

µg/m3 increase in PM2.5 would lead to a 2.65% increase in the number of health-related transac-

tions (Table 2) and a 1.5% increase in transaction value (Table I9) in the long term. In a study on

preventive expenditure, Mu and Zhang (2016) estimate that face mask purchases in China increase

by 5.45% for a 10-point increase in Air Quality Index (AQI) and 7.06% for anti-PM2.5 masks. Us-

ing the piecewise linear relationship between PM2.5 and AQI, this means that exposure to 10 µg/m3
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more PM2.5 leads to a 3.6% to 7.3% increase in preventive spending.

Williams and Phaneuf (2016) use data in the U.S. and find that a one-standard-deviation (3.78

µg/m3) change in PM2.5 leads to 8.3% more spending on asthma and COPD, which is equivalent

to a 22% increase for 10 µg/m3 more PM2.5. According to China’s National Health Commission

(2013), spending on respiratory diseases accounted for 8% of total health expenditure in 2012.

Assuming all additional spending induced by air pollution is for respiratory diseases, our estimates

translate to a 33% increase in respiratory-related spending, about 50% larger than the estimate from

Williams and Phaneuf (2016).

We now calculate the healthcare cost from elevated PM2.5. Assuming that the health impact

is the same for both bank-card and non-bank-card spending (see discussion in Appendix H), a 10

µg/m3 increase in PM2.5 translates to 59.6 billion yuan ($9.2 billion) additional healthcare spending

in 2015, with a 95% confidence interval of 4.0 - 115.2 billion yuan.32 This estimate is much larger

than existing estimates in policy discussions. For example, OECD (2016) estimates that PM2.5 and

ground-level ozone are associated with a $20 billion direct cost on health expenditures worldwide

due to morbidity based on the benefit-transfer approach, with half of these costs coming from non-

OECD countries. A simple linear interpolation based on our estimates implies that the elevated

PM2.5 (56 µg/m3 on average) relative to WHO’s recommended level of 10 µg/m3 leads to $42

billion added healthcare spending each year in China alone.

Our analysis suggests that OECD (2016) underestimates the health cost from air pollution, po-

tentially up to an order of magnitude for developing countries. This could be due to (1) downward

endogeneity bias in the dose-response function, (2) inherent differences in the dose-response func-

tion across countries, and (3) monetization of the disease incidences. The discrepancy highlights

the importance of empirical studies using data on health spending from developing countries.

The morbidity cost of air pollution includes both the direct healthcare cost and the value of lost

time from the illnesses (such as hospital visits and sick days). Our database recorded 670 million

health-related transactions in 2015, which accounted for 50% of private health spending. As such,

32China’s health expenditure exceeded four trillion yuan ($615 billion) in 2015 (National Health Commission, 2016).
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our estimate implies 35.5 million additional trips to healthcare facilities from a 10 µg/m3 increase

in PM2.5. To monetize the lost time, we assume that each trip takes three hours and the value of time

(VOT) is 100% of the hourly wage, which is an upper-end estimate of VOT in the literature (Small,

2012). The total value of the lost time from additional trips to healthcare facilities amounts to 2.3

billion yuan in 2015, compared to 59.6 billion yuan in additional healthcare spending from a 10

µg/m3 increase in PM2.5. This suggests that the direct healthcare cost is the dominant component

of the overall morbidity cost.

5.2 Comparing Morbidity and Mortality Cost

The current literature on the burden of disease from air pollution is based primarily on mortality.

A common perception is that relative to mortality, the morbidity cost is a minor component of

the overall cost of pollution. To put our estimates on healthcare cost (the primary component

of morbidity) into perspective, we calculate the mortality cost based on the empirical analysis of

Ebenstein et al. (2017). Using detailed mortality data by gender, age cohort, and disease types in

161 representative counties across China, they estimate that a 10 µg/m3 increase of PM10 would

increase the cardiorespiratory mortality rate by 8% on average and the impact varies across age

cohorts but not across gender. We take two steps to monetize the mortality estimate. First, we rely

on the benefit transfer approach to estimate the VSL for the Chinese population, due to the lack

of a national-level estimate of VSL for China. Second, we adjust the VSL for each age group.

Appendix H provides further details.

Our analysis implies that a 10 µg/m3 increase of PM2.5 would generate a mortality impact of

$13.4 billion in 2015 in China (Appendix Table I18). In comparison, our conservative estimate

of the healthcare cost is 59.6 billion yuan, or $9.2 billion, which constitutes 69% of the mortality

cost. The implied ratio of healthcare costs to mortality costs is similar to that from Deschênes et al.

(2017) in the context of the NOx emissions reduction in the U.S. Both estimates are substantially

higher than the 10% ratio used in WHO (2015) to interpolate air pollution’s economic impact.
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6 Conclusion

WHO’s global air pollution database shows that the world’s most polluted cities in 2016 were all

from developing countries such as China, India, Iran, Pakistan, Philippines, and Saudi Arabia. In

addition, 98% of cities in low- and middle-income countries with more than 100,000 residents do

not meet WHO air quality guidelines. However, past research from epidemiology and economics

going back several decades often focuses on the impacts of air pollution in developed countries.

This study provides the first comprehensive analysis of the direct healthcare cost of PM2.5 in a de-

veloping country context based on high-resolution data from the world’s largest payment network.

To address potential endogeneity in the measurement of pollution exposure, we develop an air

quality prediction model in the spirit of the US EPA’s source-receptor matrix that allows us to isolate

exogenous variations in local air quality using the spatial spillovers of PM2.5. We propose a flexible

distributed lag model to estimate the temporal effect on healthcare spending and use a data-driven

method to construct powerful IVs. Our results suggest that a 10 µg/m3 decrease in PM2.5 would

lead to at least a $9.2 billion reduction in healthcare spending annually, or 1.5% of China’s national

annual healthcare spending. The estimated healthcare cost exceeds two-thirds of the mortality cost

based on the recent literature. China’s elevated PM2.5 level relative to the WHO’s annual standards

entails at least $42 billion added healthcare expenditure in 2015. Together, these results indicate

that the recent report by OECD (2016) may have significantly underestimated the global impact of

air pollution on health expenditure ($10 billion for all non-OCED countries, including China).

In estimating the healthcare cost of air pollution in China, our analysis offers an alternative

approach to the commonly used benefit-transfer approach for developing countries. The air pol-

lution level in urban centers in developing countries is often an order of magnitude higher than

that observed in developed countries. As urbanization continues and development pressure rises,

air pollution could get worse before it gets better. The aggregate impact of air pollution on eco-

nomic growth, including factors such as human capital accumulation, productivity, talent loss due

to migration, and foreign direct investment, is an interesting and important area for future research.
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Figure 1: Residualized Plot of Log Number of Transactions v. Percentiles of PM2.5 Concentration

(a) Total Healthcare Industry (b) Pharmacies

(c) People’s Hospitals (d) Children’s Hospitals

(e) Necessities (f) Supermarkets

Notes: Each dot denotes the in-group average residuals, partialing out city FEs, weekly FEs, city-specific time trends,
city-specific seasonality, day-of-week FEs, dummies for holidays and working weekends, and weather controls (tem-
perature, precipitation, wind speed). Groups are binned by percentiles of PM2.5 residuals, depicted by the x-axis.
Figure J12 provides an alternative version of the graph by plotting the raw values of PM2.5 residuals on the x-axis,
which better demonstrates the linearity of the impacts.
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Figure 2: Impact of Air Pollution on Number of Transactions from IV Regressions with 90 Lags

(a) Health-related Consumption

(b) Non-Health Consumption

Notes: the figure plots ∑
k
τ=0 βτ , the percentage change in the number of transactions for a given consumption category

as a result of a 10 µg/m3 increase in PM2.5 concentration over the past k days as indicated by the x-axis. On the x-axis,
0 refers to the current day, 30 refers to the past 30 days, etc. For example, a 10 µg/m3 increase in PM2.5 concentration
over the past 28 days leads to 2.12% more transactions in Children’s hospitals but 0.41% fewer transactions in super-
markets. Solid lines (and solid segments) indicate significance at the 5% level. Dashed lines indicate that the impact is
statistically insignificant at the 5% level. Shaded areas are 95% confidence intervals.
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Table 1: Summary Statistics

Mean Std. Dev. Min. Max. N

Pollution
PM2.5 Concentration, µg/m3 56.3 46.4 0 985.2 198,246

Number of Transactions, Daily
Healthcare Industry, Total 7,229.2 21,308.6 0 330,974 211,318
All Hospitals 4,122.7 14,503.9 0 237,525 210,539
People’s Hospitals 1,060.6 2,800.4 0 40,332 203,407
Children’s Hospitals 464.7 1,290.5 0 18,227 158,637

Pharmacies 2,245.3 7,063.3 0 96,336 210,001
Non-health Spending, from 1% card sample

Daily Necessities 233.3 628.6 0 10,865 211,318
Supermarkets 393.4 990.3 0 15,224 210,493

Total Value of Transactions, Daily, thousand yuan
Healthcare Industry, Total 6,701.8 17,818.9 0 301,108.7 211,318
All Hospitals 5,556.5 15,066.8 0 275,883.0 210,539
People’s Hospitals 1,588.1 3,401.2 0 56,856.9 203,407
Children’s Hospitals 363.9 843.3 0 10,324.3 158,637

Pharmacies 407.4 1,109.5 0 16,735.1 210,001
Non-health Spending, from 1% card sample

Daily Necessities 236.9 551.3 0 9,532.4 211,318
Supermarkets 232.8 643.4 0 14,404.7 210,493

Weather
Mean Temperature, ◦F 60.1 18.9 -27.5 101.6 211,317
Precipitation, inch 0.1 0.4 0 15.6 211,318
Mean Wind Speed, mph 5.5 3.1 0 48.7 211,296
Wind Direction, navigational bearing - - 0 360 211,263

Notes: Data sources include China’s Ministry of Environmental Protection, UnionPay, Integrated Surface Database
(ISD), and Global Surface Summary of the Day (GSOD) Database. Data for health spending are from the full sample
of bank cards. Data for non-health spending are based on a randomly selected 1% of bank cards. Children’s hospital
category has fewer observations because some small cities do not have a Children’s hospital. UnionPay’s data quality
control process treats certain transactions as fraudulent, which leads to missing data in a few cases. The arithmetic
mean and standard deviation of wind directions do not have statistical meaning and are left out in the table.
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Table 2: Cumulative Effect of Pollution, IV with 90 Lags

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.12*** 0.12*** 0.07* 0.14*** 0.19*** -0.14*** -0.06***
(0.02) (0.03) (0.04) (0.04) (0.07) (0.03) (0.02)

Current + Past 3d 0.40*** 0.40*** 0.23* 0.47*** 0.65*** -0.45*** -0.21***
(0.07) (0.08) (0.12) (0.13) (0.23) (0.09) (0.07)

Current + Past 7d 0.61*** 0.62*** 0.39** 0.75*** 1.04*** -0.64*** -0.34***
(0.10) (0.12) (0.18) (0.19) (0.36) (0.13) (0.10)

Current + Past 14d 0.74*** 0.75*** 0.57*** 0.97*** 1.40*** -0.63*** -0.45***
(0.14) (0.16) (0.21) (0.22) (0.50) (0.16) (0.12)

Current + Past 28d 0.91*** 0.90*** 0.99*** 1.24*** 2.12*** -0.44* -0.41**
(0.22) (0.25) (0.30) (0.27) (0.79) (0.23) (0.21)

Current + Past 56d 1.97*** 1.71*** 2.31*** 2.01*** 4.65*** -0.85** -0.23
(0.42) (0.47) (0.54) (0.46) (1.56) (0.41) (0.36)

Current + All Lags 2.65*** 2.18*** 2.80*** 2.13*** 6.37*** -0.55 -0.57
(0.68) (0.71) (0.89) (0.75) (2.33) (0.58) (0.47)

N 141,794 141,657 141,567 137,853 110,259 141,770 141,652
First-stage F 38.35 38.36 38.37 39.69 47.79 38.29 38.29

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Column (1) includes all healthcare facilities.
Columns (2)-(5) include all hospitals, pharmacies, people’s hospitals, and children’s hospitals, respectively. Columns (6)-(7) include necessities following United
Nations’ COICOP classification and supermarkets, respectively. Each row reports the percentage change in the dependent variable in response to a 10 µg/m3

increase in PM2.5 over the corresponding period, ∑
k
τ=0 βτ , estimated via the IV version of the flexible distributed lag model with 90 lags. Same controls as in Table

I8. The IVs are interactions of pollution transported from distant source cities (150 km away) and meteorological conditions in the source and destination cities
as defined in Equation (6) and Section 3.2.2. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, **
p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table 3: IV Cumulative Effects of Pollution: Additional Controls

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Panel A: Controlling for other pollutants
Current + All Lags 2.55*** 2.07*** 2.73*** 2.01*** 6.21*** -0.55 -0.69

(0.69) (0.72) (0.91) (0.76) (2.34) (0.58) (0.46)
First-stage F 39.76 39.85 39.75 41.61 50.98 39.71 39.71

Panel B: Controlling for economic spillover
Current + All Lags 2.62*** 2.15*** 2.76*** 2.12*** 6.37*** -0.56 -0.56

(0.68) (0.72) (0.89) (0.76) (2.34) (0.59) (0.47)
First-stage F 37.53 37.49 37.54 38.91 45.28 37.49 37.48

Panel C: Controlling for card adoption
Current + All Lags 2.60*** 2.14*** 2.75*** 2.10*** 6.31*** -0.56 -0.59

(0.69) (0.73) (0.90) (0.74) (2.37) (0.56) (0.46)
First-stage F 38.01 38.02 38.03 39.33 47.38 37.95 37.95

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each cell reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the past 90 days, ∑

90
τ=0 βτ , estimated via the IV version of the flexible distributed lag model.

Same IVs as in Table 2. In addition to controls in Table 2, Panel A includes the daily average concentration levels of O3, SO2, NO2 and CO, Panel B includes
the average pollution level in cities outside the buffer zone but within the same region, and Panel C includes log(number of cards used) and log(number of POS
terminals) at the city-year level. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and *
p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Online Appendices for

The Healthcare Cost of Air Pollution: Evidence from the
World’s Largest Payment Network

Panle Jia Barwick Shanjun Li Deyu Rao Nahim Bin Zahur

A Descriptive Data Patterns
A.1 Descriptive Patterns of Pollution and Card Spending

Figure J1 shows the PM2.5 concentration in each city in our sample, averaged from 2013 to 2015.

Figure J2 shows the national and regional average of PM2.5 concentration in our sample period,

where the average is taken across all monitoring stations. Figure J3 shows how the number of debit

and credit cards per capita varies across different cities.

To illustrate intertemporal spending patterns, Appendix Figure J11 plots weekly healthcare

spending and the number of transactions at the national level from 2013 to 2015. There is a signif-

icant drop in both spending and transaction frequency during holidays. In addition, both variables

have more than tripled during our sample period due to the diffusion of bank cards. We control

for these two salient features in our regressions through holiday fixed effects and city-specific time

trends.

Table I1 looks at associations of the cross-sectional card adoption rate with city demographics,

both with and without province fixed effects, using city-level data. Higher household income and

education and a younger population are associated with higher adoption.

A.2 Correlation between Card Spending and Health Outcomes

Our data on card transactions in healthcare facilities do not identify specific diseases associated with

the spending. Figure J4 illustrates the high correlation between the log number of Unionpay card

transactions in hospitals against the log number of National Bureau of Statistics reported hospital

visits at the province-year level for our sample period. The remaining part of this section provides
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further evidence on the strong correlation between our spending data and health outcomes based

on two confidential micro-level health data.

Beijing: Emergency Ambulance Dispatches (EAD) Our first micro-level evidence on the va-

lidity of using card transactions in healthcare facilities as a measure of health outcomes is based on

the universe of daily emergency ambulance dispatches (EAD) data in Beijing from 2013 to 2015,

which was used in Zhong et al. (2017). EAD has been used in the medical literature as a measure

of health outcomes (Yang et al., 2014; Straney et al., 2014; Dolney and Sheridan, 2006). In China,

an ambulance is dispatched whenever someone calls 120, the public phone number for emergency

medical services. Due to the low private vehicle ownership and the highly subsidized fees for emer-

gency ambulances (50 yuan (about $7) within 3 km and 7 yuan (about $1) for each additional km),

calling 120 is very common in case of a medical emergency.

Figure J5 shows a strong positive correlation between the number of ambulance dispatches in

Beijing and the number of card transactions in hospitals at the monthly level. The correlation coef-

ficient between these two variables is 0.55 at the daily level and 0.88 at the monthly level. Table I2

presents the OLS regressions of daily card transactions in hospitals on daily emergency ambulance

dispatches in Beijing with and without controlling for various fixed effects. These fixed effects

capture seasonalities in diseases that are common underlying factors behind card transactions and

ambulance dispatches. The positive correlation between these two variables persists after a rich set

of time fixed effects, is very precisely estimated (significant at the 1% level), and remains stable

from Column 3 onwards. The results imply that the correlation between the two data series is driven

not only by seasonalities (captured by the fixed effects) but also by idiosyncratic factors (such as

weather and air pollution). The R-squared value is high, considering the different nature of these

two times series.

Ganzhou City: Health Insurance Claims Our second micro-level evidence is based on the uni-

verse of health insurance claims by urban employees from the Urban Employee Health Insurance

program (UEHI) in the city of Ganzhou in Jianxi province. UEHI is one of the three major public

health insurance programs in the country. Ganzhou is a medium sized city with a population of 8.4
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million, 75% of whom lives in rural areas. Its GDP per capita is 15,000 yuan in 2011, less than

half of the national average. Bank card penetration in these rural areas is lower than in urban cities.

We use Ganzhou to evaluate the correlation between card transactions and health outcomes in rural

areas, which helps to address concerns of sample selection.

The data contain the total number of health insurance claims at the daily level from January

2012 to September 2013, which overlaps with the earlier part of our sample period.33 As the case

with Beijing, there is a strong and positive correlation between the number of health insurance

claims and hospital related card transactions (Figure J6 and Table I3). The correlation coefficient is

0.39 at the daily level and 0.69 at the monthly level.34 The R-squared value is high and the regres-

sion coefficients are statistically significant, with Column (7) implying a 1% increase in insurance

claims is associated with a 0.1% increase in the number of hospital card transactions. These results

suggest there is a strong correlation between card transactions and insurance claims after partialling

out a rich set of time fixed effects.

B B-Spline Specification and Estimation

B.1 B-Spline Construction

Table I7 illustrates that using daily lagged pollution leads to imprecise and oscillating coefficients

as a result of high serial correlations among pollution variables. To address this issue, we ex-

tend Almon (1965) and specify the impact of past pollution exposure on today’s spending as basis

functions to flexibly capture pollution’s dynamic impact on health spending.

Recall our baseline specification:

yit =
k

∑
τ=0

βτ pi,t−τ + xxxitα +θi · t +ξi +ηw + εit (B.1)

where βτ denotes the impact of pollution exposure τ days in the past on today’s spending. We

assume that βτ can be approximated by a set of B-spline basis functions of τ: βτ = ∑m γmBm(τ),

33Card penetration prior to 2013 was lower than that in our sample period. We expect the correlation between card
transactions and health insurance claims during our sample period to be higher than the numbers reported here.

34The date reported in the claims data refers to the date when the patient visited the hospital, rather than the date when
the claim was filed.
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where γm are unknown parameters to be estimated and Bm are basis functions. Section 3.1 discusses

the example of a cubic B-spline with one segment, which amounts to a simple 3rd order polynomial

function of τ . We now describe how to extend this to the more general case where the basis function

Bm(τ) is an r-th order B-spline in τ with z segments.

To do so we introduce some new notation. Let the support of τ be [0,s]. We divide the support

into z sub-intervals by a vector of z+1 knots ttt = [t0, t1 · · · , tz], where t0 = 0 and tz = s. The r-th order

B-spline, which is equivalent to a piecewise polynomial of order r−1 (enforcing Cr−2 continuity),

can be constructed from a set of basis functions:

Bm,r(τ|ttt) = (tm+r− tm)
r

∑
k=0

[
∏

0≤h≤r,h6=k
(tm+h− tm+k)

]−1

(τ− tm+k)
r−1
+

where

(τ− tm+k)
r−1
+ = 1(τ > tm+k) · (τ− tm+k)

r−1

Since there are z sub-intervals and the order of the spline is r, there will be z+ r−1 such B-splines.

We can now define βτ as a linear combination of these B-splines:

βτ =
z−1

∑
m=1−r

γmBm,r(τ|tm, ..., tm+r) (B.2)

Plug equation (B.2) into equation (B.1) and rewrite the distributed lag model as:

yit =
k

∑
τ=0

βτ pi,t−τ + xxxitα +θi · t +ξi +ηw + εit

=
k

∑
τ=0

z−1

∑
m=1−r

γmBm,r(τ|ttt)pi,t−τ + xxxitα +θi · t +ξi +ηw + εit

=
z−1

∑
m=1−r

γm

[
k

∑
τ=0

Bm,r(τ|ttt)pi,t−τ

]
+ xxxitα +θi · t +ξi +ηw + εit

=
z−1

∑
m=1−r

γmvm,it + xxxitα +θi · t +ξi +ηw + εit

where vm,it = ∑
k
τ=0 Bm,r(τ|ttt)pi,t−τ , a weighted sum of past pollution exposure with the B-spline

basis terms Bm,r(τ|ttt) as weights.

In practice, the econometrician chooses both the order of the spline, r− 1, and the number

of segments, z. In our benchmark estimates, we use cubic B-splines (r = 4) with three segments
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(z = 3), which leads to six key regressors {v1,it , ...,v6,it}. The cubic B-spline is a popular choice

and is equivalent to a piece-wise cubic polynomial with smoothness constraints at each knot up to

the 2nd order derivative (twice continuously differentiable). We choose three segments so that the

time series pattern of the marginal impact βτ for each past month is characterized by a separate

cubic polynomial.

B.2 B-Spline Estimation and Standard Errors

We can rewrite equation (B.2) in the matrix notation as

βββ
k×1

= BBB
k×(z+r−1)

γγγ

(z+r−1)×1

where vector βββ =



β0

...

βτ

...

βk


, γγγ =



γ1−r

...

γm

...

γz−1


, and matrix BBB =


B1−r,r(1|ttt) · · · Bz−1,r(1|ttt)

... . . . ...

B1−r,r(k|ttt) · · · Bz−1,r(k|ttt)

 . BBB is called

the collocation matrix of the B-spline and defines the linear transformation from γγγ to βββ .

To estimate a linear model35 yyy
n×1

= XXX
n×k

βββ
k×1

whose coefficients βββ follows a B-spline as described

in equation (B.2), we can rewrite the model as

yyy = XXXβββ

= XXX [BBBγγγ]

= [XXXBBB]γγγ

=VVV γγγ

where columns (variables) in VVV each is a linear combination of XXX’s columns (variables), and

VVV
n×(z+r−1)

= XXX
n×k

BBB
k×(z+r−1)

.

γγγ can then be estimated with the method of the econometrician’s choice (e.g. OLS, IV36). Once γγγ

35In the following section, we generalize the spline estimation to linear models, not just distributed lag models.
36For IV estimations, we should also apply the linear transformation BBB to the matrix of IVs.
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and its variance-covariance matrix, var(γγγ), are estimated, we can estimate βββ and its variance as

β̂ββ = BBB γ̂γγ

v̂ar(β̂ββ ) = BBB v̂ar(γ̂γγ) BBB′

where the second line follows the delta method. Hypothesis tests can then be conducted based on

the standard errors of β̂ββ ,

ŝe(β̂ββ ) =
√

diag(v̂ar(β̂ββ ))

B.3 Related Methods and Literature

Our methodology builds on an econometrics literature that discusses estimation of distributed lag

models. As mentioned in the main text, these models are challenging to estimate via ordinary least

squares when there are a large number of lags. Almon (1965) first proposed approximating the

lag coefficients with polynomial functions, while Corradi and Gambetta (1976) and Corradi (1977)

suggested the use of spline functions instead in order to impose weaker assumptions on the shape

of the lag distribution function. Our flexible distributed lag model is most closely related to these

latter papers, but we additionally show how to incorporate and construct instrumental variables

within this framework. This is necessary in applications where endogeneity renders ordinary least

squares estimation inconsistent.

Sieve methods (including splines and B-splines) have been widely in the field of economics,

particularly in the context of semi-parametric or non-parametric estimation of models without

lagged variables (Barseghyan et al., 2013; Busse et al., 2013; Ortiz-Bobea et al., 2019) or interpola-

tion of missing data (Ortiz-Bobea, 2020). However, prior studies in economics have not commonly

employed such methods to flexibly estimate distributed lag models.

By contrast, there is a well-established literature in epidemiology that utilizes both polynomial

approaches, as well as B-splines or non-parametric models, to capture distributed lag effects. Poly-

nomial approaches for approximating distributed lag functions (building on Almon, 1965) have

been used in Schwartz (2000) and Zanobetti et al. (2002) to estimate the mortality impact of air

pollution. Zanobetti et al. (2000) estimate distributed lag models where the lag distribution is ap-
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proximated by penalized spline functions (similar to the suggestion of Corradi, 1977), in order

to study the impact of air pollution on mortality and quantify the mortality displacement effect.

The use of splines to approximate the lag distribution has also been prevelant in the epidemiology

literature studying the health impact of temperature changes van Loenhout et al. (2018). More re-

cent papers have developed and estimated distributed lagged non-linear models (DLNMs), which

allow both for non-linearity in the impact of air pollution on the outcome variable, as well as non-

parametric approximations of the lag coefficients (Armstrong, 2006; Gasparrini and Armstrong,

2013; Gasparrini, 2014; Gasparrini et al., 2017).

A contribution of our research, relative to the epidemiology literature, is to develop an ap-

proach for incorporating instrumental variables into the class of models that utilizes parametric or

non-parametric approximations of the lag distribution (such as DLNMs). Our approach combines

the use of B-spline approximations of the lag distribution (to address multicollinearity issues aris-

ing in distributed lag models), with the use of instrumental variables to address the challenge of

endogeneity (which complicates causal inference).

Finally, the use of spline-based methods requires the researcher to choose hyperparameters such

as the order of the spline and the number of segments: a useful reference is Li and Racine (2007).

Adaptive methods for selecting spline basis functions include the Multivariate Adaptive Regression

Spline (MARS) (Friedman, 1991); see Barwick and Pathak (2015) for an application of MARS for

the approximation of value functions.

B.4 B-Spline Estimation: A Practitioner’s Guide

This section outlines the construction of B-spline collocation matrix BBB based on MATLAB’s Curve

Fitting Toolbox. The steps are as follows:

1. Define parameters

• k: the number of columns in XXX ,

• r: the number of parameters in spline segment (i.e., order of spline +1),

• z: the number of segments;
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• do f : the degree of freedom on derivatives at knots (equals 1 by default for B-spline) 37.

2. Define linear space from 0 to k−1 as the support of the B-spline.

1 l i n s p = [ 0 : k − 1 ] ;

3. Define evenly distributed knots on the support.

1 k n o t s = au gkn t ( l i n s p a c e ( 0 , k −1 , z +1) , r , dof ) ;

4. Define the linear transformation (collocation matrix) BBB for B-spline.

1 B = s p c o l ( kno t s , r , l i n s p ) ;

For our baseline specification,

1 k =91; % number o f columns i n X,

2 r =4 ; % o r d e r o f s p l i n e +1

3 z =3; % number o f segmen t s

4 dof =1; % d e g r e e o f f reedom on d e r i v a t i v e s a t k n o t s

The collocation matrix and the intermediaries are

BBB =



1 0 0 0 0 0

0.9033 0.0951 0.0016 6.1728e−06 0 0
...

...
...

...
...

...

0 0 6.1728e−06 0.0016 0.0951 0.9033

0 0 0 0 0 1


91×6

,

and

llliiinnnsssppp =

[
0 1 2 · · · 89 90

]
,

37B-spline functions are piece-wise polynomials with continuity constraints at knots. For example, for a B-spline
function based on two pieces of 3rd order polynomials y1(x) and y2(x) that join at a knot x0, the two pieces will need
to satisfy C0, C1, and C2 continuity by the definition of B-spline, leaving only one degree of freedom. Specifically,
the continuity constraints are C0: y1(x0) = y2(x0); C1: ∂y1(x)

∂x |x=x0 =
∂y2(x)

∂x |x=x0 ; and C2: ∂ 2y1(x)
∂x2 |x=x0 =

∂ 2y2(x)
∂x2 |x=x0 .
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kkknnnoootttsss =
[

0 0 0 0 30 60 90 90 90 90

]
.

Additionally, one can change the kkknnnoootttsss matrix to generalize the B-spline to a broader set of splines

where the continuity constraints are relaxed, or more commonly, where additional constraints are

imposed (e.g., enforcing value to be zero at start or end of the support, imposing smoothness con-

straints at the end point).

In our baseline specification, the estimated coefficients for all health-related transactions is

γ̂γγ =

[
0.1206 −0.0373 0.0526 0.0386 0.0063 0.0118

]′
,

and we can recover β̂ββ = BBBγ̂γγ as the current and lagged impacts of air pollution. Based on the

estimates of daily impacts, we construct estimates on cumulative impacts as shown in Table 2

(Column 1) and Figure 2a (red line). The full sets of γ̂γγ for each consumption category are reported

in Table I19.

C IV Construction

As discussed in Section 3.2.2, we exploit the long-range transport property of PM2.5 to construct

instrumental variables for PM2.5. To provide a graphical example, panel (a) of Figure J7 plots the

wind-pollution vectors for over 300 cities on Dec. 5, 2013. Each arrow’s length indicates the wind

speed, rescaled to match the exact distance the arrow can travel in a day. The arrow width indicates

the level of PM2.5 concentration at the source city. Panel (b) shows all pollution subvectors that are

blown towards Beijing on the same day. The amount of pollution that Beijing imports is the sum

of pollutants carried through all subvectors that reach Beijing at time t after originating from other

cities in previous days.

Our instruments aim to proxy for the amount of pollution imported from cities outside the buffer
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zone, p̂ f ar
it :

p̂ f ar
it = ∑

j:di j>r
p+j→i, t = ∑

j:di j>r
max[cosΦ ji,0] · p j,t−si jt ·

L

∑
l

γlul(di j,w j,t−si jt ,wi,t)

=
L

∑
l

γl ∑
j:di j>r

max[cosΦ ji,0] · p j,t−si jt ·ul(di j,w j,t−si jt ,wi,t)

=
L

∑
l

γlZl
it , where Zl

it = ∑
j:di j>r

max[cosΦ ji,0] · p j,t−si jt ·ul(di j,w j,t−si jt ,wi,t), l = 1, ...,L

(B.3)

The instruments for pit is the set of {Zl
it}L

l=1. These are valid instruments since they only depend

on weather in city i, which we control for in our regressions, and on pollution and weather vari-

ables in cities outside the buffer zone, which are uncorrelated with city i’s spending shocks by

our identification assumption. In our baseline specification, we use 15 second-order polynomial

terms ul(.) for a flexible approximation of the decay function: 1) constant, the inverse distance, and

origin city’s weather (wind speed, precipitation, temperature) (5 terms); 2) the quadratic terms of

the inverse distance, and the quadratic terms of origin city’s weather (4 terms); 3) the product of

the inverse distance and the origin city’s weather (3 terms); 4) the destination city’s weather (wind

speed, precipitation, temperature) (3 terms).

Baseline IVs In summary, we use fifteen instruments {Zl
it}L

l=1 for current-day pollution pit , where

the IVs are defined in equation (B.3). The IVs for lagged pollution pi,t−τ are lagged instruments

{Zl
i,t−τ
}L

l=1.

We now describe how to construct instruments for our flexible distributed lag model. As shown

in Section 3.1 and in Appendix B.1, the lagged distributed model can then be written as:

yit =
z−1

∑
m=1−r

γm

[
k

∑
τ=0

Bm,r(τ|ttt)pi,t−τ

]
+ xxxitα +θi · t +ξi +ηw + εit

=
z−1

∑
m=1−r

γmvm,it + xxxitα +θi · t +ξi +ηw + εit

where the main regressors, vm,it = ∑
k
τ=0 Bm,r(τ|ttt)pi,t−τ , are weighted sums of lagged pollution

pi,t−τ . To construct instruments for these regressors, we similarly take the weighted sum of the
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lagged exogenous variables Zl
i,t−τ

, where the weights are the same B-spline terms:

W l
m,it =

k

∑
τ=0

Bm,r(τ|ttt)Zl
i,t−τ , l = 1, ...,L

Our L instruments for {vm,it}m are therefore {W l
m,it}L

l=1. In our baseline specification with cubic

B-splines (r = 4) and three segments (z = 3), we have 6 endogenous regressors {vm,it}m=2
m=−3 and 90

instruments. Code files for the construction of our baseline IVs are available here.

First-Stage Results: Further Evidence In this section, we provide additional evidence that vari-

ation in the instrumental variables correspond to changes in the average PM2.5 levels in destination

cities, building on the discussion in Section 4.1.

First, one of our main IVs is the average PM2.5 of origin cities, weighted by the inverse of the

distance between the source and destination cities, adjusted by wind direction. This IV is a proxy

for how much PM2.5 is imported from the source cities to the destination city. Figure J13 shows

that the higher the value of this IV (horizontal axis), the higher the average PM2.5 in destination

cities (vertical axis).

In Figure J8, we use Shanghai as an illustrative example: Shanghai is a coastal city, with pollut-

ing cities to its west and the sea to its east (Figure J8a). When wind blows from the west, pollution

levels are higher in Shanghai because it is downwind of polluting cities (Figure J8b).

Our instrumental variables also predict that pollution levels are higher in Shanghai on days

when the wind blows from west to east. Figure J8c shows how one of our IVs, pollution intensity

from faraway source cities, varies with the direction from which wind is blowing into Shanghai.

Figure J8d shows how the predicted pollution level from the first-stage regression (which reflects

all our instrumental variables) varies with the wind direction.

D Additional Robustness Checks

This section discusses an additional set of robustness checks we have conducted in addition to the

ones described in Section 4.2 in the main text.
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Robustness to B-splines and buffer zone radii Appendix Table I20 reports the cumulative im-

pact for overall healthcare spending under three different numbers of B-spline segments (1, 2, and

3) and five lags (30, 60, 90, 120 and 150). The estimates across different segments are similar.

Our base specification uses three segments, which provides a good balance between flexibility and

precision. In terms of the lag length, the cumulative impact is considerably smaller using 30-day

lags but stabilizes after 90 lags.38 We prefer 90-day lags because the estimated effects for lagged

pollution are significant until around 90 days and start to lose significance for more distant lags.39

Next, we carry out robustness checks with regard to the buffer zone radius in constructing IVs.

We fix the radius at 150 km in the benchmark specification and assume that unobservables outside

the buffer zone of a city would not affect healthcare spending in that city. There is an inherent trade-

off in the choice of the radius. On the one hand, the larger the buffer zone, the easier it is for the

exclusion restriction to hold. On the other hand, the bigger the radius, the weaker the correlation

between the predicted PM2.5 using non-local pollution and the observed PM2.5 in a given city.

Appendix Table I21 presents several choices of the buffer zone from 100 km to 300 km with an

increment of 50 km.40 The top panel reports the first-stage results. Initially, both the R2 and the

F-statistics decrease with the radius of the buffer zone, suggesting a weaker correlation between the

IV and the endogenous variable as the buffer zone gets larger. However, increasing the radius of the

buffer zone beyond 150 km leads to little change in the first-stage F-statistic, suggesting that the IVs

primarily reflect distant, non-local sources of pollution that are unaffected by changes in the buffer

zone radius. The bottom panel shows the cumulative medium-term impact on healthcare spending,

which varies from 2.42% to 2.88% across different radii when PM2.5 increases by 10 µg/m3 over

a 3-month period. Our preferred specification with a 150 km radius delivers an estimate that is in

the middle of this range, though results are relatively stable across buffer zones within 300 km.41

38Cross-validation results indicate that models with long lags are preferred to the model with 30 days of lags.
39We plot in Figure J14 the daily impacts for the baseline specification (90-day lags) and the specification with 150-day

lags. The estimated effects are very similar for the first 90 days and are both statistically significant; estimated effects
for the 150-day specification start to lose significance beyond 90 days. The estimated cumulative effect is similar and
is mainly driven by effects within the first 90 days, even if we use the 150-day specification.

40Williams and Phaneuf (2016) construct IVs for air pollution using pollutants 60 km (or 120 km) away without
exploiting wind patterns.

41300 km is well within the travel distance of PM2.5. For example, at a moderate speed of 15 miles per hour, it takes
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This is consistent with: (1) the long-range transportability of PM2.5, and (2) non-local sources

accounting for a significant share of local air pollution level (e.g., on average 35% for Beijing

during 2005-2010, according to Wang et al., 2015).

Placebo Test Appendix Table I22 conducts a placebo test that constructs IVs based on randomly

generated wind direction and wind speed. To offer a useful benchmark, we first drop IVs that

depend on temperature and precipitation and limit to a parsimonious set of IVs that are only in-

teractions between wind speed and direction and source cities’ pollution. As shown in Column

(2), the estimated impact of PM2.5 on health spending is comparable to our baseline specification,

though the F-stat is lower, indicating weaker IVs. In Column (3), we randomize wind direction and

speed using random draws from their empirical distribution. The first-stage F-stat is merely 7.24.

Moreover, the impact of PM2.5 is noisily estimated with wrong signs and statistically insignificant,

as expected.

Alternative Identification Strategies An alternative identification strategy is to drop source

cities’ pollution and other meteorological conditions altogether and only use wind direction in

destination cities to instrument for changes in air pollution. Since the effect of wind direction on

air pollution depend on geography, we interact wind direction with region dummies that are created

by a K-means clustering algorithm to spatially classify cities (similar to Deryugina et al., 2019).

Appendix Table I23 compares our baseline results (Column 1) with results from these alter-

native IVs that are purely based on destination wind direction (Column 2). One challenge we

encounter with wind-IVs is that they fail to pass the weak IV test. While wind directions are well-

suited to identify short-term impacts as in Deryugina et al. (2019), they lack enough variation to

explain changes in both current and lagged daily pollution in our context. Using the identification-

robust confidence intervals proposed by Andrews (2018) that are valid under weak IVs, the impacts

of pollution on healthcare spending are estimated with much less precision. The long-run effect of

a 10µg/m3 increase in PM2.5 on the aggregate healthcare transactions is estimated to be an insignif-

icant 1.48%, as opposed to 2.65% in the baseline.

only one day for PM2.5 from 360 miles away to be transported to a destination.
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Lastly, we also implement the RD design based on the differential heating policy across the Huai

River. Following Chen et al. (2013), Ebenstein et al. (2017) and Ito and Zhang (2018), we collapse

the sample to a single cross-section, which removes the high-resolution temporal variation. These

papers examined (heavier) TSP or PM10 in earlier years. In our context, the Huai River policy

turns out to be a weak IV for PM2.5, likely a result of PM2.5’s long-range transport property, the

recent reform on the heating policy (e.g., pay for heating in the north), and other environmental and

energy regulations (e.g., switching coal to natural gas for winter heating) in recent years.

Flexible Weather Controls In our baseline regressions, we control for local temperature, precip-

itation, and wind speed. Appendix Table I24 explores the effect of including more flexible weather

controls. Panel A is identical to the baseline specification. Panel B includes 2nd-order polynomial

terms in weather variables. In Panel C, we create ten temperature bins similar to Deschênes and

Greenstone (2011) and six bins for each of precipitation and average wind and include interaction

terms of the bins. Panel D accommodates medium-term effects of local weather on health spending

by additionally controlling for lagged weather variables up to 90 days.42 Finally, in Panel E, we

include lagged weather at both the origin and the destination cities, given that weather patterns

are spatially correlated and weather conditions in a destination city may be correlated with lagged

weather conditions in origin cities.43 Overall the results appear reasonably robust though somewhat

smaller with the inclusion of more flexible weather variables. The long-run effect of a 10µg/m3

increase in PM2.5 on the number of all health transactions is 2.16% in Panel C with the most flexi-

ble weather controls, 1.98% in Panel D with lagged local weather variables, and 1.80% in Panel E

with lagged weather in both the source and destination cities, as opposed to 2.65% in the baseline

specification.

42We include the following lags for each weather variable at the destination city: the weather of day (t-1), (t-2), up to
day (t-7); the average weather from day (t-8) to (t-14), the average weather from (t-15) to (t-28), the average weather
from day (t-29) to (t-56) and the average weather from (t-57) to (t-90).

43For each destination city, we construct an unweighted average of the lagged weather in each of the source cities,
under the assumption that the weather travels to the destination city at the prevailing wind speed. We then include the
same set of lags for source weather as we do for local weather. We thank an anonymous referee for this suggestion.
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Pollution Monitoring and Sample Cities The number of cities where air pollution was moni-

tored has grown considerably over time as the Chinese government rolled out the nationwide pol-

lution monitoring and public disclosure program from 2013 (Barwick et al., 2022). To check if the

effects of air pollution are different for cities where monitoring began early and cities where moni-

toring began later, we carry out a robustness check that limits to the 159 cities where pollution has

been monitored since 2013 (thus dropping cities where monitoring began in 2014 or afterwards).

The results are shown in Appendix Table I25. The long-run effect of a 10µg/m3 increase in PM2.5

on the number of health transactions is 2.08% for cities with pollution monitoring since 2013, as

opposed to 2.65% for the full sample. This reflects the fact that pollution monitoring began in

larger, richer cities and was later extended to smaller cities with lower per capita income. As we

discuss in Section 4.3, the marginal effect of PM2.5 is smaller for wealthier cities.

E Avoidance Behavior

This section provides evidence that households engage in avoidance behavior to mitigate their

pollution exposure. A key insight of this analysis is that when consumers engage in avoidance

behavior, expectations of future pollution levels should affect current consumption. For example,

if consumers expect pollution to improve in the near future, they may postpone their consumption

to avoid current exposure. On the other hand, an expectation of worse air quality tomorrow may

encourage them to shift future consumption to today.

To investigate avoidance behavior, we assume that consumers can perfectly foresee the air qual-

ity on the following day and adjust their spending accordingly. In other words, we include the

following day’s pollution as an additional regressor in the main specification. The perfect-foresight

assumption is partly driven by the lack of systematic data on pollution forecasts that individuals had

access to when making decisions. Admittedly, this is a strong assumption. However, the issue of air

quality was highly salient during our sample period and China’s Ministry of Environmental Protec-

tion (MEP) had just launched a nationwide pollution monitoring-and-disclosure program (Barwick

et al., 2022). Real-time forecasts of air quality were available to consumers both from government
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websites and smartphone apps. To account for measurement errors and possible omitted variable

bias, we instrument for future PM2.5 using 1-day leads of our instruments for today’s PM2.5.

The results are illustrated in Panel A of Table I26. A 10 µg/m3 increase in PM2.5 on the next

day is associated with a 0.70% contemporaneous increase in transactions in the aggregate health

care sector. The impact is larger for pharmacies than for hospitals, consistent with the fact that

hospital visits are often scheduled in advance and less substitutable intertemporally. Spending in

supermarkets also increases when next-day pollution is expected to deteriorate. The estimated

cumulative impact on healthcare spending that is associated with a 10 µg/m3 increase of PM2.5

over the past 90 days is 2.51%, slightly lower than but comparable to when we do not control for

avoidance. In Panels B and C, we replace pollution the following day with the average pollution in

the next 3 days and 7 days, respectively. The results are similar. While the assumption of perfect

foresight is stronger for longer time horizons, our IV approach can potentially address the concern

of measurement errors that arise as a result of not observing the forecasts that consumers use.

We have carried out additional analyses where we relax the assumption of perfect foresight

and assume that individuals form an expectatio of PM2.5 on day (t + 1) based on the information

they have available at day t. Specifically, we regress pi,t+1 on current day PM2.5, current weather,

weather on day (t + 1) (assuming meteorological forecasts are available and accurate), as well as

PM2.5 that is expected to arrive on day (t +1) from surrounding cities, and use the predicted value

from this regression as the forecasted PM2.5 on the next day. The results are quantitatively similar,

though slightly noisier.

F Correlation in Economic Activity

A key identification assumption we make is that economic activities in regions outside the buffer

zone are uncorrelated with local shocks to spending, after controlling for weather variables and

fixed effects. A potential concern with this is that economic activity may be correlated even be-

tween cities that are located far away from each other, if they share similar business cycles (Poncet

and Barthélemy, 2008; Gatfaoui and Girardin, 2015). In this section, we further substantiate our
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identification assumption, by examining the extent to which economic activity is correlated across

cities. We also show that our estimates are robust to the inclusion of controls for economic activity

in regions outside the buffer zone.

We measure daily consumption in each city using debit and credit card spending on daily ne-

cessities.44 We then compute the Pearson correlation coefficient between consumption in each city

(“local consumption") with the total consumption in cities inside the buffer zone (“nearby con-

sumption") as well as in cities outside the buffer zone (“faraway consumption"). We do so both for

the raw consumption measures, and for the residualized consumption after controlling for different

combinations of weather variables and fixed effects (including the full set of controls and fixed

effects we use in our main regressions).

The results are shown in Table I27. Column (1) shows that after controlling for city fixed effects,

the correlation between local and nearby consumption is 0.33, while the correlation between local

and faraway consumption is 0.42 These correlations remain almost the same if we also account for

weather and holiday controls (Column 2). The correlation in economic activity we find are similar

in magnitude to the correlations in provincial monthly GDP reported by Poncet and Barthélemy

(2008).

In our empirical analysis, though, we also control for city-specific time trends, week fixed

effects and day-of-the-week fixed effects. City-specific time trends account for systematic trends

in economic activity, such as due to economic growth that may be differential across cities. Week-

of-the-sample and day-of-the-week fixed effects control for any common time-varying factors. For

example, business cycles that are common to all Chinese cities are accounted for by these fixed

effects. Including both these sets of fixed effects leads to a substantial reduction in the correlation,

as column (3) illustrates. The correlation between local and faraway consumption is now weakly

negative, at -0.12. By contrast, the positive correlation between local and faraway PM2.5 remains

sizeable at 0.26 even after inclusion of these fixed effects.

44The results are very similar if we instead use the number of transactions in daily necessities, or if we measure
consumption using supermarket spending, the other major category of non-health spending we observe. Those
results are omitted for brevity but are available upon request.
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Our analysis indicates that while there is a high degree of co-movement in the daily economic

activity of Chinese cities, much of this is absorbed by the use of week fixed effects and city-

specific time trends. After inclusion of these fixed effects, there is little correlation between local

economic activity and economic activity in cities outside the buffer zone, providing support for our

identification assumption.

Finally, as an additional robustness check, we repeat our benchmark regressions while control-

ling for the total consumption of daily necessities in cities outside the buffer zone. As illustrated in

Table I28, inclusion of this control makes little difference to our estimates of the effect of PM2.5 on

health consumption.

G Heterogeneous Impact

This section examines the heterogeneity of pollution’s impact on health spending. To conserve the

number of parameters, we use one-segment instead of three-segment B-splines, since cumulative

effects are similar across different segments (Table I20). This corresponds to a simple third-order

polynomial, as explained in Section 3.1.

To examine how pollution’s impact on health spending differs across polluted and less-polluted

days and by income, we allow βτ , the coefficient of pollution exposure on day t− τ , to depend on

the quadratic term of PM2.5 (for Appendix Figure J9) and income (for Appendix Figure J10) as

well as the linear term. Specifically, the impact of past pollution pi,t−τ is defined as:

βτ(τ,w|γγγ,,,σσσ) = (σ1w+σ2w2)+(γ0 + γ1τ + γ2τ
2 + γ3τ

3) (D.1)

where σ1w+σ2w2 captures heterogeneity and allows the intercept of the βτ -curve to vary across

different levels of w. Parameters σ ’s and γ’s are coefficients to be estimated. If σ ’s are significant,

then pollution’s impact on health spending exhibits heterogeneity across variable w.

We report coefficient estimates for equation (D.1) in Table I15. Column (1) reports estimates

without heterogeneity, i.e., the specification z= 1,k = 90 in Table I20. Columns (2) and (3) report σ

estimates that govern heterogeneity across different PM2.5 concentration and per capita disposable

income, respectively. We draw Appendix Figure J9 and Appendix Figure J10 based on estimates in
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Columns (2) and (3). Column (4) allows βτ to depend on both pollution concentration and income.

To examine pollution’s heterogeneous impact across seasons, we use the following:

βτ(τ,w|γγγ,,,σσσ) = (σ1 ·1{summer}+σ2 ·1{fall}+σ3 ·1{winter})+(γ0+γ1τ +γ2τ
2+γ3τ

3) (D.2)

where 1{summer},1{fall},and 1{winter} are dummy variables for different seasons. Coefficient

estimates for σ ’s are reported in Table I16. Analysis for the heterogeneity across years is done

analogously:

βτ(τ,w|γγγ,,,σσσ) = (σ1 ·1{Year 2014}+σ2 ·1{Year 2015}+(γ0 + γ1τ + γ2τ
2 + γ3τ

3) (D.3)

Results are reported in Column 2 of Table I16.

H Healthcare Costs

According to China’s National Health Commission (2016), national health expenditure which in-

cludes both private and public spending, was more than four trillion yuan ($615 billion) in 2015.

Bank card transactions in the Unionpay system account for half of the total private spending (which

is roughly 30% of the aggregate health spending). In order to interpolate our estimates of the health

impact to the entire population, we need to make assumptions on health spending that is not covered

by Unionpay. There are several considerations that suggest our analysis is likely to underestimate

the population impact. First, elderly are more vulnerable to air pollution. In the U.S., the elderly

accounts for 15% of the population but 34% of health spending in 2014. The elderly population

has few cards per person and is less likely to use credit and debit cards on average. Second, low-

income residents experience a more severe health impact from pollution (Figure J10), but bank card

penetration is lower in low-income areas. As a result, our analysis is likely to underestimate the

population impact.

One might be concerned that individuals using credit and debit cards are likely to have better

insurance coverage than individuals without cards, and hence consume more healthcare when pol-

lution increases. While the extent of moral hazard could be different between card users and other

consumers, this concern is mitigated by the institutional features of China’s healthcare system, in
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particular the long waiting time (which discourages over-usage), time lags in getting reimbursed

for insurance, and high co-pays. Moreover, while individuals with better insurance coverage may

use more healthcare than individuals with lower coverage, the morbidity cost (which includes lost

productivity and reduced quality of life due to sickness in addition to the healthcare cost) of the

latter group is not necessarily lower. Indeed, the inability of an individual to seek treatment upon

falling sick (due to limited insurance coverage) may lead to worsening of their health condition,

thus increasing their morbidity cost relative to individuals with better insurance coverage.

Our main analysis indicates that health spending (in the Unionpay system) increases by 1.5%

in value and 2.65% in transaction frequency in response to a 10 µg/m3 increase of PM2.5 over 90

days. Table I17 benchmarks our results with the findings in the related literature. To estimate the

healthcare cost from elevated PM2.5 for the entire population, we assume that the health impact is

the same for both bank-card and non-bank-card spending. Based on China’s national healthcare

spending in 2015, the 1.5% impact from a 10 mg/m3 increase in PM2.5 translates to 59.6 billion

yuan ($9.2 billion).

Mortality cost: To compare our healthcare estimate (part of the morbidity cost) with the mortality

impacts in the literature, we monetize the mortality estimate from Ebenstein et al. (2017), who find

that a 10 µg/m3 increase of PM10 would increase the cardiorespiratory mortality rate by 8% on

average.

Our calculation proceeds in two steps. There are no national-level estimates on the Chinese

population’s VSL. Narain and Sall (2016) suggest a transfer elasticity (or income elasticity) of

1.2 for transferring the U.S. VSL estimate to a developing country. China’s per capita income is

about an eighth of that in the U.S. At the elasticity of 1.2, the VSL for the Chinese population is

9.27% of that for the U.S. population. Using Ashenfelter and Greenstone (2004)’s estimate of $2.27

million (in 2015 USD) for the U.S. population – adopted by Deschênes et al. (2017) to quantify

the mortality cost of NOx emissions reductions – the Chinese population’s VSL is $0.21 million in

2015.45

45Hoffmann et al. (2017) use data from 3 major cities in China and find a VSL of $0.615 million in 2016 dollars. The
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Second, we adjust the VSL for each age group, based on estimates in Murphy and Topel (2006).

The VSL is at the full value for people less than 40 years old, but reduces to 40% of its full value

by age 65 and 15% by age 80. Similar to what Deschênes et al. (2017) find, this adjustment is

important because the age group 65 and above accounts for less than 9% of the total population but

nearly 75% of the changes in mortality from air quality improvement.

The mortality cost is sensitive to the assumed VSL. There is considerable heterogeneity across

published estimates of the VSL (Kniesner et al., 2012), ranging from under $2 million (Alberini

et al., 2004; Ashenfelter and Greenstone, 2004) to EPA’s estimate of $8.7 million. If we were to

use EPA’s estimate of $8.7 million, the healthcare cost we estimate from PM2.5 is still 18% of the

mortality cost. The ratio of morbidity over mortality could be higher once other components of

morbidity are factored in, such as reduced productivity and the disutility of falling sick.

Our baseline calculation (reported in the main text) assumes that the mortality cost of a 10

µg/m3 increase of PM2.5 is the same as that of a 10 µg/m3 increase of PM10. This translates to a

mortality cost of $13.4 billion. Alternatively, since PM2.5 accounts for 60% of PM10 concentration

(Zhou et al., 2016), another assumption could be that the mortality cost of a 10 µg/m3 increase

of PM10 is equivalent to the mortality cost of a 6 µg/m3 increase of PM2.5. Under this alternative

assumption, a 10 µg/m3 increase of PM2.5, or equivalently a 16.7 µg/m3 increase in PM10, would

inflict a mortality cost of $22.3 billion (as opposed to $13.4 billion).

average income in these cities doubles China’s national average income level. Using a transfer elasticity of 1.2, the
VSL at the national level would be $0.25 million, close to our estimate of $0.21 million.
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I Additional Tables

Table I1: Coverage of Bank Cards from UnionPay in 2015

Log(No. of cards per capita)

(1) (2)

log(household income) 1.556*** 1.362***
(0.093) (0.126)

Years of education 0.156*** 0.327***
(0.041) (0.055)

Average age -0.040*** 0.005
(0.012) (0.014)

Constant -13.00*** -13.82***
(0.662) (0.983)

Province fixed effects No Yes
No. of obs. 287 287
R2 0.682 0.831

Notes: The unit of observation is a city. The dependent variable is the log of number of active bank cards per capita in
2015 as shown in Figure J3. The city-level demographics (income, education, and age) are from the 2005 Census.

Table I2: Daily Card Transactions and Ambulance Dispatches in Beijing 2013 - 2015

Number of Card Transactions in Hospitals

(1) (2) (3) (4) (5) (6) (7)

Number of 227.5*** 213.0*** 89.64*** 92.49*** 91.84*** 85.56*** 86.13***
Emergency Calls (10.60) (7.804) (15.37) (15.38) (15.46) (11.90) (11.89)

Fi
xe

d
E

ff
ec

ts Day of the Week Yes Yes Yes Yes Yes Yes
Year-week Yes Yes Yes Yes Yes
Linear Trend Yes Yes Yes Yes
Season Yes Yes Yes
Holidays Yes Yes
Spring Festival Yes

R2 0.300 0.625 0.849 0.850 0.851 0.912 0.912

Notes: We regress the number of card transactions in hospitals in Beijing on the number of hospital ambulance
dispatches in Beijing at the daily level from 2013 to 2015. The number of observations is 1,078. Standard errors in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table I3: Daily Hospital Card Transactions and Insurance claims in Ganzhou

log (Number of Card Transactions in Hospitals)

(1) (2) (3) (4) (5) (6) (7)

log (Number of 0.571*** 0.553*** 0.198*** 0.193*** 0.192*** 0.118** 0.103**
Insurance Claims) (0.057) (0.056) (0.048) (0.048) (0.048) (0.048) (0.048)

Fi
xe

d
E

ff
ec

ts

Day of Week Yes Yes Yes Yes Yes Yes
Year-week Yes Yes Yes Yes Yes
Linear Trend Yes Yes Yes Yes
Season Yes Yes Yes
Holidays Yes Yes
Spring Festival Yes

R2 0.140 0.177 0.651 0.652 0.652 0.677 0.680

Notes: We regress the logarithm of the number of card transactions in hospitals in Ganzhou on the logarithm of the
number of insurance claims in Ganzhou. The data is at the daily level, ranging from January 2012 to September 2013.
The number of observations is 623. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table I4: First-Stage Regressions

Endogenous variable: PM2.5, current day

(1) (2) (3)

In
cl

ud
ed

IV
s D

ai
ly

w
ea

th
er

Temperature -4.57*** -4.21*** -6.47***
(0.44) (0.43) (0.64)

Precipitation -48.52*** -47.30*** -23.35***
(2.32) (2.29) (4.12)

Wind speed -2.58*** -3.93*** -5.61***
(0.49) (0.49) (0.76)

D
ay

co
nt

ro
ls

Holiday -47.41*** -45.75*** -42.72***
(4.06) (4.09) (4.06)

Working weekend 15.46* 15.95* 17.58**
(6.23) (6.32) (6.15)

Spring festival 293.7*** 273.6*** 253.9***
(17.67) (17.37) (16.80)

City FEs, week FEs, city-specific time trends,
Yes Yes Yescity-specific seasonality, day-of-week FEs

E
xc

lu
de

d
IV

s

Sum of PM2.5 from distant cities:
Unweighted 0.01***

Yes

(0.002)
Weighted by inverse of distance 0.46***

(0.03)
Weighted by wind speed of source city 0.001

(0.001)
Weighted by temperature of source city -0.09***

(0.006)
Weighted by precipitation of source city -0.02***

(0.005)
Weighted by destination city’s weather variables,

Yessquares of inverse distance and source cities’ weather variables,
and interactions between inverse distance and source cities’ weather variables.

R2 0.46 0.46 0.47
Number of excluded IVs 1 4 15
Effective F-statistic for excluded IVs 36.02 161.06 112.21
Critical value for weak IVs 37.41 28.84 28.89

Notes: The endogenous variable is current-day PM2.5. The number of observation is 192,586. Standard errors are in parentheses, clustered at the city level.
Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. Effective F-statistics for excluded IVs following Olea and Pflueger (2013) are
reported in the bottom panel. Critical value for weak IVs reports the upper 5% quantile for the noncentral χ2 distribution from Olea and Pflueger (2013), allowing
for a 5% bias with one single endogenous variable.
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Table I5: OLS Estimates of the Pollution Impact on Health Spending: Contemporaneous Effects

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

PM2.5, Current Day 0.11*** 0.11*** 0.12*** 0.13*** 0.18*** -0.06*** -0.03
(0.02) (0.02) (0.02) (0.02) (0.05) (0.02) (0.02)

N 192,586 191,814 191,277 185,773 146,224 192,035 191,766

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each column reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 in the current day. Same controls as in Table 2. Standard errors in parentheses are clustered at the
city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.

Table I6: IV Estimates of the Pollution Impact on Health Spending: Contemporaneous Effects

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

PM2.5, Current Day 0.65*** 0.73*** 0.60*** 0.77*** 1.13*** -0.09 -0.10
(0.09) (0.11) (0.15) (0.13) (0.37) (0.15) (0.12)

N 192,586 191,814 191,277 185,773 146,224 192,035 191,766
First-stage F 112.21 111.37 111.17 104.91 86.13 111.71 111.77
Critical value for weak IVs 28.89 28.88 28.89 28.85 29.01 28.88 28.89

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each column reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 in the current day. Same controls as in Table 2. The IVs are interactions of pollution transported
from distant source cities (150 km away) and meteorological conditions in the source and destination cities as defined in Equation (6). Standard errors in parentheses
are clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The First-stage F for excluded IVs is the effective
F-statistics following Olea and Pflueger (2013). Critical value for weak IVs reports the upper 5% quantile for the noncentral χ2 distribution from Olea and Pflueger
(2013), allowing for a 5% bias with one single endogenous variable.
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Table I7: IV Estimates for the Effect of Lagged PM2.5 on Health Spending

(1) (2) (3) (4) (5) (6)

pi,t 0.65*** 0.213 1.639*** 1.282*** 1.032*** 1.012***
(0.0891) (0.141) (0.277) (0.227) (0.210) (0.204)

pi,t−1 0.343** -1.708*** -1.062*** -0.646* -0.505*
(0.132) (0.367) (0.294) (0.268) (0.255)

pi,t−2 1.136*** 0.572** 0.270 -0.00588
(0.220) (0.206) (0.206) (0.217)

pi,t−3 0.152 0.256 0.604**
(0.115) (0.150) (0.194)

pi,t−4 -0.0467 -0.413**
(0.0953) (0.141)

pi,t−5 0.231*
(0.104)

N 192586 191,598 190,786 190,068 189,401 188,750
First-stage F 61.93 29.24 13.03 10.06 11.19 12.16

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. We include the same
controls as in Table 2. The IVs are interactions of pollution transported from distant source cities (150 km away) and
meteorological conditions in the source and destination cities as defined in Equation (6) in the main text. Standard
errors in parentheses are clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05,
and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and
clustered at the city level.
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Table I8: Cumulative Effect of Pollution, OLS with 90 Lags

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.03*** 0.04*** 0.05*** 0.04*** 0.06*** -0.03*** -0.02**
(0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

Current + Past 3d 0.12*** 0.11*** 0.18*** 0.13*** 0.19** -0.11*** -0.07**
(0.03) (0.03) (0.04) (0.04) (0.08) (0.03) (0.03)

Current + Past 7d 0.19*** 0.16*** 0.32*** 0.21*** 0.25* -0.16*** -0.11***
(0.05) (0.06) (0.07) (0.06) (0.15) (0.05) (0.04)

Current + Past 14d 0.25*** 0.16 0.49*** 0.30*** 0.20 -0.16** -0.13**
(0.08) (0.10) (0.10) (0.08) (0.28) (0.07) (0.06)

Current + Past 28d 0.38*** 0.18 0.80*** 0.39*** 0.12 -0.15 -0.09
(0.13) (0.15) (0.16) (0.14) (0.50) (0.12) (0.11)

Current + Past 56d 0.66*** 0.27 1.42*** 0.47** 0.57 -0.27 0.03
(0.19) (0.20) (0.29) (0.24) (0.74) (0.21) (0.18)

Current + All Lags 0.86*** 0.34 1.81*** 0.59* 0.38 -0.08 0.02
(0.27) (0.28) (0.42) (0.36) (1.14) (0.27) (0.21)

N 141,794 141,657 141,567 137,853 110,259 141,770 141,652

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Column (1) includes all healthcare facilities.
Columns (2)-(5) include all hospitals, pharmacies, people’s hospitals, and children’s hospitals, respectively. Columns (6)-(7) include necessities following United
Nations’ COICOP classification and supermarkets, respectively. Each row reports the percentage change in the dependent variable in response to a 10 µg/m3

increase in PM2.5 over the corresponding period, ∑
k
τ=0 βτ , estimated using the OLS version of the flexible distributed lag model with 90 lags. For example, the third

row reports the cumulative effect of a 10 µg/m3 increase in PM2.5 in the current day and the past week. The controls are city FEs, week FEs, city-specific time
trends, city-specific seasonality, day-of-week FEs, dummies for holidays and working weekends, and weather controls (temperature, precipitation, wind speed).
Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table I9: IV Estimates of Pollution Impacts on the Value of Transactions with 90 Lags

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.07*** 0.07** 0.01 0.10** 0.01 -0.12** -0.04
(0.02) (0.03) (0.05) (0.05) (0.09) (0.05) (0.05)

Current + Past 3d 0.23*** 0.25*** 0.04 0.34** 0.05 -0.38** -0.16
(0.08) (0.08) (0.15) (0.15) (0.30) (0.17) (0.17)

Current + Past 7d 0.36*** 0.38*** 0.04 0.54** 0.13 -0.55** -0.36
(0.11) (0.13) (0.21) (0.23) (0.45) (0.24) (0.25)

Current + Past 14d 0.42*** 0.46*** 0.03 0.69** 0.33 -0.56** -0.68**
(0.15) (0.17) (0.24) (0.27) (0.59) (0.27) (0.31)

Current + Past 28d 0.43* 0.44 0.29 0.79*** 1.09 -0.34 -0.99**
(0.25) (0.29) (0.34) (0.30) (0.88) (0.34) (0.43)

Current + Past 56d 1.04** 0.83 1.64*** 1.15** 4.07** -0.32 -0.95
(0.47) (0.54) (0.61) (0.47) (1.72) (0.58) (0.75)

Current + All Lags 1.47** 1.08 1.96** 1.20 6.12** 0.54 -0.66
(0.70) (0.78) (0.96) (0.83) (2.61) (0.87) (1.04)

N 141,794 141,656 141,566 137,854 110,257 141,757 141,641
First-stage F 38.35 38.38 38.37 39.68 47.79 38.26 38.30

Notes: the dependent variable is log(value of transactions) for a given consumption category in city i on day t. Each row reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the corresponding period, ∑

k
τ=0 βτ , estimated via the IV version of the flexible distributed lag

model with 90 lags. Same controls and IVs as in Table 2. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by ***
p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city
level.
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Table I10: Cumulative Effects of Pollution: Robustness of IVs

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

Panel A: IV constructed using source cities’ time-invariant pollution
Current + All Lags 2.69*** 2.17*** 3.83*** 2.16** 2.41 -1.74*** -0.56

(0.64) (0.58) (1.22) (0.90) (1.99) (0.67) (0.57)
First-stage F 26.96 27.02 26.95 26.88 29.34 26.79 26.93

Panel B: IV constructed without destination cities’ weather variables
Current + All Lags 2.91*** 2.49*** 2.79*** 2.41*** 6.66*** -0.41 -0.31

(0.71) (0.77) (0.90) (0.80) (2.56) (0.62) (0.49)
First-stage F 29.62 29.67 29.60 30.57 37.92 29.55 29.57

Panel C: Drop major cities
Current + All Lags 2.25*** 1.75*** 2.75*** 2.21*** 5.50*** -0.48 -0.51

(0.55) (0.51) (0.92) (0.76) (2.03) (0.60) (0.48)
First-stage F 37.00 37.03 37.06 38.16 47.25 36.98 36.93

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each cell reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the past 90 days, estimated via the IV version of the flexible distributed lag model. Same
controls as in Table 2. Panel A constructs the IVs using the average (time-invariant) level of PM2.5 in cities more than 150 km away. Panel B drops IVs constructed
using destination cities’ weather so that none of the IVs uses local information. Panel C drops the following large cities: Beijing, Shanghai, Guangzhou, Shenzhen,
Wuhan, Chongqing, Chengdu, and Nanjing. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, **
p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table I11: Strength of the First Stage and Wind Speed

Subsample 1 2 3 4

Average Wind Speed, mph 2.6 4.1 5.7 9.8
First-stage effective F-stat 43.42 47.60 57.17 63.72

Notes: We divide the estimation sample into four equally sized subsamples based on quartiles of the wind speed in the
destination city. We then report the first-stage effective F-statistic for excluded IVs (Olea and Pflueger, 2013) for each
subsample.

Table I12: Strength of the First Stage and Dust Emissions

Subsample 1 2

City’s Share of Dust Emissions 3.5% 18.3%
First-stage effective F-stat 64.3 52.6

Notes: We split the cities in our sample into two equally sized subgroups according to their dust emission relative to
province’s total (from 2012). We then report the first-stage effective F-statistic for excluded IVs (Olea and Pflueger,
2013) for each subsample.
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Table I13: IV Estimates of Pollution Impacts on the Number of Transactions per capita

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.11*** 0.12*** 0.05 0.14*** 0.19*** -0.16*** -0.07***
(0.02) (0.03) (0.04) (0.04) (0.07) (0.03) (0.02)

Current + Past 3d 0.36*** 0.38*** 0.19 0.48*** 0.64*** -0.51*** -0.26***
(0.08) (0.08) (0.12) (0.12) (0.24) (0.09) (0.06)

Current + Past 7d 0.56*** 0.58*** 0.34* 0.76*** 1.03*** -0.73*** -0.41***
(0.11) (0.12) (0.18) (0.18) (0.36) (0.13) (0.10)

Current + Past 14d 0.70*** 0.70*** 0.54** 0.98*** 1.40*** -0.73*** -0.53***
(0.14) (0.16) (0.22) (0.22) (0.50) (0.16) (0.12)

Current + Past 28d 0.91*** 0.86*** 1.04*** 1.22*** 2.13*** -0.54** -0.46**
(0.22) (0.25) (0.30) (0.27) (0.79) (0.23) (0.21)

Current + Past 56d 1.99*** 1.71*** 2.34*** 1.98*** 4.71*** -0.95** -0.25
(0.42) (0.47) (0.53) (0.45) (1.54) (0.42) (0.36)

Current + All Lags 2.70*** 2.22*** 2.85*** 2.26*** 6.53*** -0.59 -0.61
(0.69) (0.72) (0.89) (0.75) (2.33) (0.61) (0.47)

N 135,297 135,162 135,291 131,699 107,424 135,283 135,294
First-stage F 39.12 39.16 39.16 40.85 52.47 39.09 39.14

Notes: The dependent variable is log(number of transactions per capita) for a given consumption category in city i on day t. Each row reports the percentage change
in the dependent variable in response to a 10 µg/m3 increase in PM2.5 over the corresponding period, ∑

k
τ=0 βτ , estimated via the IV version of the flexible distributed

lag model with 90 lags. Same controls and IVs as in Table 2. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by ***
p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city
level.
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Table I14: IV Estimates of the Impact of Average Lagged Pollution on Spending

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Panel A: Contemporaneous effect (Table I6)
Current Day PM2.5 0.65*** 0.73*** 0.60*** 0.77*** 1.13*** -0.09 -0.10

(0.09) (0.11) (0.15) (0.13) (0.37) (0.15) (0.12)
First-stage F 112.21 111.37 111.17 104.91 86.13 111.71 111.77

Panel B:
7-day Average PM2.5 0.68*** 0.73*** 0.63*** 0.83*** 1.58** -0.22 -0.08

(0.13) (0.16) (0.17) (0.15) (0.60) (0.13) (0.12)
First-stage F 109.3 109.1 108.7 104.2 83.43 109.2 109.3

Panel C:
30-day Average PM2.5 1.17*** 1.25*** 1.31*** 1.39*** 3.33** -0.10 0.37

(0.28) (0.33) (0.38) (0.32) (1.27) (0.27) (0.25)
First-stage F 61.74 61.71 61.46 59.28 45.12 61.73 61.80

Panel D:
60-day Average PM2.5 1.97*** 1.67** 2.21** 1.79*** 5.50* -0.53 0.17

(0.53) (0.60) (0.69) (0.52) (2.22) (0.45) (0.35)
First-stage F 37.97 37.92 37.91 36.51 29.34 37.97 37.96

Panel E:
90-day Average PM2.5 2.15** 1.50 2.44* 1.61* 6.53* -0.44 -0.11

(0.76) (0.79) (1.02) (0.73) (2.64) (0.63) (0.44)
First-stage F 27.69 27.63 27.66 26.96 24.43 27.68 27.71

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each panel is a separate set of regressions, where
the key regressor is PM2.5 averaged over the corresponding time window. For example, in Panel B, the regressor ‘7-day average PM2.5’ is the average PM2.5 from
day t − 7 to day t. Remaining controls (fixed effects, time trends and weather controls) and IVs are the same as in Table 2. Standard errors are in parentheses,
clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F for excluded IVs is the effective F-statistic
following Olea and Pflueger (2013). Critical value for weak IVs, allowing for a 5% bias with one endogenous variable, ranges from 27.3 to 29.0 depending on the
specification.
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Table I15: Coefficient Estimates on Heterogeneity: PM2.5 and Disposable Income

(1) (2) (3) (4)

Heterogeneity (w) No Heterogeneity PM2.5 Disposable Income PM2.5 & Income

C
ub

ic
Po

ly
no

m
ia

l
γ1 0.06*** 0.06*** 0.07* 0.08**

(0.01) (0.01) (0.04) (0.04)
γ2 -4.11E-03*** -3.86E-03*** -3.52E-03*** -3.91E-03***

(1.41E-03) (1.38E-03) (1.25E-03) (1.32E-03)
γ3 1.17E-04*** 1.11E-04*** 1.07E-04*** 1.16E-04***

(3.79E-05) (3.74E-05) (3.18E-05) (3.47E-05)
γ4 -9.23E-07*** -8.77E-07*** -8.76E-07*** -9.30E-07***

(2.89E-07) (2.88E-07) (2.36E-07) (2.60E-07)

H
et

er
og

en
ei

ty

σ1 - PM2.5 0.13** 0.14**
(0.06) (0.06)

σ2 - PM2.5 -0.37*** -0.40***
(0.11) (0.12)

σ1 - Income -1.24E-02 -1.53E-02
(2.53E-02) (2.49E-02)

σ2 - Income 1.14E-03 1.62E-03
(3.66E-03) (3.60E-03)

Max./Min. Point = −σ̂1
2σ̂2

179 µg/m3 54,700 yuan

Notes: The table reports coefficient estimates on equation D.1:

βτ(τ,w|γγγ,,,σσσ) = (σ1w+σ2w2)+(γ0 + γ1τ + γ2τ
2 + γ3τ

3).

where βτ(τ,w|γγγ,,,σσσ) denotes the percentage change in healthcare expenditure in response to a 10 µg/m3 increase in PM2.5 on day t−τ . Column (3) uses each city’s
average annual per capita disposable income from 2013 to 2015. Column (4) allows βτ to depend on both pollution concentration and income. PM2.5 concentration
is rescaled to mg/m3 and disposable income is rescaled to 10,000 yuan. The maximum/minimum points are defined by ∂β

∂w = 0, or w∗ = −σ̂1
2σ̂2

, which corresponds to
the maximum/minimum point of the quadratic term (σ1w+σ2w2). Standard errors are in parentheses, clustered at the city level. Significance levels are indicated
by *** p < 0.01, ** p < 0.05, and * p < 0.10. γ2,γ3,γ4’s in Columns (2), (3) and (4) are insignificantly different from those in Column (1).
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Table I16: Coefficient Estimates on Heterogeneity: Season and Year

(1) (2)

Heterogeneity (w) Season Year

C
ub

ic
Po

ly
no

m
ia

l

γ1 0.04*** 0.05*
(0.02) (0.02)

γ2 -2.94E-03** -4.59E-03***
(1.30E-03) (1.29E-03)

γ3 9.36E-05*** 1.34E-04***
(3.47E-05) (3.58E-05)

γ4 -7.80E-07*** -1.1E-06***
(2.66E-07) (2.81E-07)

H
et

er
og

en
ei

ty

1{spring} -
-

1{summer} -8.13E-05
(1.82E-03)

1{fall} 2.13E-03
(2.65E-03)

1{winter} 7.66E-03***
(1.60E-03)

1{Year 2013} -
-

1{Year 2014} 0.01
(0.02)

1{Year 2015} 0.02
(0.03)

Notes: The table reports coefficient estimates based on equation (D.2) and (D.3). 1{·} is a dummy variable. This
analysis allows βτ , the percentage change in healthcare expenditure in response to a 10 µg/m3 increase in PM2.5 on
day t−τ , to differ across seasons and years. Standard errors are in parentheses, clustered at the city level. Significance
levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table I17: Summary of the Dose-Response Relationship from Literature

Source Dose, additional Response

Mu and Zhang (2016) 100-point AQI 54.5% increase in mask purchases,
70.6% increase in anti-PM2.5 mask purchases

Williams and Phaneuf (2016) 1 std. dev. of PM2.5 (3.78 µg/m3) 8.3% more spending on asthma and COPD

Schlenker and Walker (2016) 1 std. dev. of pollution 17% more asthma and other respiratory incidences,
9% more heart incidences

Arceo et al. (2015) 1 µg/m3 PM10 0.23 per 100,000 increase in infant mortality
1 ppb CO 0.0046 per 100,000 increase in infant mortality

He et al. (2016) 10 µg/m3 PM10 (roughly 10%) 8.36% increase in all-cause mortality rate
285,000 more premature deaths each year

Chay and Greenstone (2003) 1% TSP 0.35% increase in infant mortality rate nationwide

Our estimation 10 µg/m3 PM2.5 2.65% increase in healthcare transactions
1.5% increase in healthcare expenditure
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Table I18: Mortality Cost Calculation

Age group Urban population Rural Population Urban mortality rate Rural mortality rate VSL Mortality impact
(per 100,000) (per 100,000) in million (2015$) in percentage

20-24 73,195,616 58,048,857 4.31 3.81 0.2106 10
25-29 59,414,692 44,637,171 5.47 5.54 0.2106 11
30-34 57,695,497 42,364,156 8.07 7.07 0.2106 14
35-39 66,981,015 54,594,597 13.71 12.48 0.2106 10
40-44 65,704,887 62,801,076 26.02 23.90 0.1895 12
45-49 55,242,460 53,527,870 42.25 46.27 0.1684 13
50-54 40,364,926 40,756,761 65.87 71.27 0.1474 13
55-59 38,563,476 45,194,486 105.52 125.79 0.1263 12
60-64 26,819,982 33,611,729 209.62 255.81 0.1053 12
65-69 18,448,986 23,900,786 402.25 459.16 0.0842 11
70-74 15,221,689 18,742,359 880.11 1092.46 0.0632 9
75-79 10,848,240 13,721,250 1744.92 1998.33 0.0421 7
80-84 5,936,146 7,839,253 3632.06 4316.95 0.0316 5
85 and above 3,370,721 4,474,484 9685.26 13128.58 0.0211 3

Notes: This mortality cost calculation follows closely Deschênes et al. (2017). The population data are for 2015. The mortality rates per 100,000 are only for
cardiorespiratory diseases and are from the 2015 National Health Statistics. Based on the transfer elasticity of 1.2 and the 2.27 million (in 2015$) estimate for the
U.S. population’s VSL from Ashenfelter and Greenstone (2004), the estimated VSL for the Chinese population is $0.2106 million for a prime age person. The age
adjustment is based on Murphy and Topel (2006). The estimated mortality impact (last column) of a 10 µg/m3 increase in PM10 on the cardiorespiratory mortality
rate during life cycle is from Table S6 in Ebenstein et al. (2017).
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Table I19: Coefficient Estimates of the B-splines

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

γ1 0.121*** 0.123*** 0.067* 0.139*** 0.194*** -0.144*** -0.059***
(0.022) (0.025) (0.038) (0.039) (0.072) (0.029) (0.021)

γ2 -0.037* -0.039* -0.002 -0.024 -0.038 0.081*** -0.006
(0.021) (0.023) (0.030) (0.028) (0.066) (0.025) (0.020)

γ3 0.053*** 0.056*** 0.059** 0.058** 0.133*** -0.043* 0.019
(0.016) (0.018) (0.024) (0.027) (0.046) (0.025) (0.023)

γ4 0.039 0.012 0.047 0.002 0.082 -0.005 -0.005
(0.024) (0.026) (0.032) (0.024) (0.077) (0.026) (0.022)

γ5 0.006 0.018 -0.004 0.014 -0.060 0.035 -0.004
(0.019) (0.022) (0.027) (0.026) (0.053) (0.024) (0.020)

γ6 0.012 -0.002 -0.007 -0.026 0.181** -0.007 -0.034
(0.029) (0.032) (0.036) (0.041) (0.088) (0.027) (0.023)

Notes: This table reports six coefficients (γ’s) estimated in our baseline B-spline framework. Significance levels are
indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.

Table I20: IV Cumulative Effects of Pollution: Different Number of Lags and Segments

Number of Lags k

Number of Segments z 30 days 60 days 90 days 120 days 150 days

1 1.18*** 2.12*** 2.42*** 2.60*** 2.58*
(0.25) (0.51) (0.69) (0.98) (1.48)

2 1.41*** 2.26*** 2.67*** 2.80*** 2.62*
(0.25) (0.52) (0.69) (0.95) (1.43)

3 1.28*** 2.16*** 2.65*** 2.74*** 2.41*
(0.25) (0.49) (0.68) (0.93) (1.40)

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. Each cell reports the
percentage change in the dependent variable in response to a 10 µg/m3 increase in PM2.5 over the period as indicated
by the column heading, estimated via the IV version of the flexible distributed lag model that uses the number of
B-spline segments as indicated by the row heading. For example, the cell in the first column and first row reports the
percentage change in all health-related transactions in response to a 10 µg/m3 increase in PM2.5 over the past 30 days,
estimated via the IV version of the flexible distributed lag model with one B-spline segment. Same IVs and controls
as in Table 2. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by ***
p < 0.01, ** p < 0.05, and * p < 0.10.
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Table I21: IV Cumulative Effects of Pollution: Different Buffer Zone Radii

Radius for the Buffer Zone

100 km 150 km 200 km 250 km 300 km

First Stage Regression
R2 0.486 0.474 0.467 0.464 0.462
First-stage F 46.69 38.35 34.14 35.36 35.33

IV Regression
Current + All Lags 2.42*** 2.65*** 2.86*** 2.86*** 2.88***

(0.60) (0.68) (0.71) (0.72) (0.70)

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t.Each column uses
the buffer zone radius as indicated by the column heading in constructing the instruments. The top panel reports the
first-stage results, and the bottom panel reports the percentage change in all health-related transactions in response to a
medium-run 10 µg/m3 increase in PM2.5 over the past 90 days. Same set of IVs (except for the buffer zone radius) and
controls as in Table 2. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated
by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are
robust to heteroskedasticity and clustered at the city level.

Table I22: Placebo Exercise – IV Estimates Using Randomized Wind Direction and Speed

(1) (2) (3)

Only keep IVs that interact with wind No Yes Yes
Randomize wind direction + speed (placebo) No No Yes

Current Day 0.12*** 0.11 -0.06*
(0.02) (0.07) (0.03)

Current + Past 3d 0.40*** 0.37* -0.15
(0.07) (0.21) (0.12)

Current + Past 7d 0.61*** 0.54* -0.10
(0.10) (0.31) (0.22)

Current + Past 14d 0.74*** 0.60 0.20
(0.14) (0.37) (0.41)

Current + Past 28d 0.91*** 0.71* 0.80
(0.22) (0.40) (0.71)

Current + Past 56d 1.97*** 2.07*** 1.13
(0.42) (0.55) (1.17)

Current + All Lags 2.65*** 2.29*** -1.69
(0.68) (0.83) (1.82)

# IVs 90 24 24
First-stage F 38.35 15.09 7.24

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. The number of
observations is 141,794. Same controls as in Table 2. Column (1) replicates the first column in Table 2. Column
(2) keeps IVs that interact pollution transported from distant source cities (150 km away) with wind speed and wind
direction and drops IVs that use variation in temperature and rainfall. Column (3) replicates Column (2), except
that the actual wind direction and speed are replaced with randomly generated wind direction and speed (a placebo
exercise). Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by ***
p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to
heteroskedasticity and clustered at the city level.
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Table I23: Estimates of Pollution Impacts: Alternate IVs Using Wind Direction Following Deryugina
et al. (2019)

(1) (2)

Baseline IVs Yes
Wind direction interacted with spatial group FE as IVs Yes

Current Day 0.12*** 0.06
(0.02) (0.08)

Current + Past 3d 0.40*** 0.19
(0.07) (0.29)

Current + Past 7d 0.61*** 0.30
(0.10) (0.51)

Current + Past 14d 0.74*** 0.39
(0.14) (0.86)

Current + Past 28d 0.91*** 0.56
(0.22) (1.51)

Current + Past 56d 1.97*** 1.22
(0.42) (2.62)

Current + All Lags 2.65*** 1.48
(0.68) (3.54)

# IVs 90 900
First-stage F (Cragg-Donald) 254.91 14.73

Notes: The dependent variable is log(total number of healthcare transactions) in city i on day t. The number of
observations is 141,794. Column (1) replicates the first column in Table 2. Column (2) follows Deryugina et al.
(2019), where wind direction dummies are interacted with 50 group dummies classified via the K-means clustering
algorithm, resulting in 900 IVs. Since the number of IVs exceeds the number of city clusters, the cluster-robust
Kleibergen-Paap Wald rk F-stat cannot be computed. Instead, we report the Cragg-Donald F-statistic which assumes
homoskedasticity. For reference, the Stock and Yogo (2005) critical value based on a maximal TSLS bias of 5% with
three endogenous variables and 30 instruments is 20.27. It is computationally challenging to compute critical values
with many endogenous regressors; simulation evidence indicates the critical value is around 20. As Column (2)’s IVs
fail to pass the weak IV test, we follow Andrews (2018) and construct the identification-robust confidence intervals
that are valid under weak IVs. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10.
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Table I24: IV Cumulative Effects of Pollution: Flexible Weather Controls

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

Panel A: Baseline regression with linear terms of local weather
Current + All Lags 2.65*** 2.18*** 2.80*** 2.13*** 6.37*** -0.24 -0.55

(0.68) (0.71) (0.89) (0.75) (2.33) (0.44) (0.58)
First-stage F 38.35 38.36 38.37 39.69 47.79 38.35 38.29

Panel B: Include 2nd-order polynomials of local weather
Current + All Lags 2.39*** 1.85*** 2.66*** 1.94*** 5.54** -0.41 -0.74*

(0.67) (0.69) (0.90) (0.74) (2.34) (0.57) (0.45)
First-stage F 37.28 37.25 37.30 38.11 46.46 37.21 37.20

Panel C: Include bins of local weather variables
Current + All Lags 2.16*** 1.58** 2.54*** 1.63** 5.49** -0.37 -0.74

(0.68) (0.70) (0.91) (0.72) (2.37) (0.58) (0.46)
First-stage F 36.25 36.21 36.23 36.89 46.90 36.19 36.22

Panel D: Include current and lagged local weather variables
Current + All Lags 1.98*** 1.06* 3.01** 1.81** 4.29 0.25 -0.61

(0.59) (0.58) (1.24) (0.87) (3.65) (0.76) (0.60)
First-stage F 24.88 24.82 24.81 26.33 33.75 24.86 24.88

Panel E: Include lagged weather variables at both source cities and destination city
Current + All Lags 1.80*** 0.68 3.03** 1.37 4.02 0.36 -0.55

(0.60) (0.61) (1.24) (0.90) (3.74) (0.77) (0.59)
First-stage F 23.77 23.81 23.64 24.44 32.16 23.76 23.73

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. Each cell reports the percentage change in the
dependent variable in response to a 10 µg/m3 increase in PM2.5 over the past 90 days, ∑

90
τ=0 βτ , estimated via the IV version of the flexible distributed lag model.

Panel A replicates the bottom row of Table 2 which controls for linear terms of weather variables (temperature, precipitiation and average wind speed). Panel B
includes 2nd-order polynomials in weather variables. Panel C includes bins of temperature, precipitation and average wind speed as well as all the interactions
between the bins. Temperature is grouped into 10 bins (< 10F◦,10−20F◦, ...,> 90F◦). Precipitation and average wind speed are grouped into 6 bins each. Panel
D includes the following weather lags at the destination city: the weather of day (t− 1),(t− 2), up to day (t− 7); the average weather between day (t− 8) and
(t−14), the average weather between (t−15) and (t−28), the average weather between day (t−29) and (t−56) and the average weather between (t−57) and
(t−90). Panel E includes the same set of weather lags as in Panel D for both the source and destination cities. The remaining controls and IVs are the same as in
Table 2. Standard errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage
F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table I25: IV Estimates of Pollution Impacts, Limiting to Cities Where Pollution Was Monitored from 2013 Onward

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

(1) (2) (3) (4) (5) (6) (7)

Current Day 0.11*** 0.12*** 0.06 0.17*** 0.18** -0.13*** -0.05***
(0.03) (0.03) (0.04) (0.04) (0.08) (0.03) (0.02)

Current + Past 3d 0.36*** 0.39*** 0.20 0.55*** 0.60** -0.42*** -0.20***
(0.08) (0.09) (0.13) (0.14) (0.25) (0.10) (0.07)

Current + Past 7d 0.55*** 0.58*** 0.33* 0.84*** 0.95** -0.62*** -0.36***
(0.12) (0.14) (0.20) (0.20) (0.40) (0.14) (0.10)

Current + Past 14d 0.64*** 0.63*** 0.50** 1.01*** 1.30** -0.67*** -0.52***
(0.16) (0.19) (0.24) (0.24) (0.57) (0.16) (0.13)

Current + Past 28d 0.73*** 0.63** 0.86** 1.10*** 2.14** -0.47** -0.46**
(0.25) (0.28) (0.34) (0.28) (0.89) (0.22) (0.19)

Current + Past 56d 1.55*** 1.28** 1.84*** 1.54*** 4.77*** -0.65* -0.17
(0.48) (0.52) (0.61) (0.46) (1.72) (0.37) (0.31)

Current + All Lags 2.08*** 1.62** 2.09** 1.63** 6.37** -0.19 -0.50
(0.77) (0.80) (0.98) (0.79) (2.54) (0.56) (0.45)

N 103,146 103,142 103,140 101,161 87,295 103,137 103,145
First-stage F 45.31 45.33 45.42 50.60 64.90 45.37 45.32

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. The sample is limited to the 159 cities with hourly
monitored pollution data since 2013. Same controls and IVs as in Table 2. Standard errors are in parentheses, clustered at the city level. Significance levels are
indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and
clustered at the city level.
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Table I26: IV Cumulative Effects of Pollution: Avoidance Behavior

Health-related Consumption Non-health Spending

Health All Hospitals Pharmacy People’s Children’s Necessities Supermarket

Panel A: Avoidance depends on tomorrow’s pollution
Pollution tomorrow 0.70*** 0.67*** 0.86*** 0.61*** 0.85*** -0.02 0.31***

(0.12) (0.11) (0.20) (0.17) (0.32) (0.14) (0.11)
Current + All Lags 2.51*** 2.11*** 2.57*** 2.01*** 6.25*** -0.56 -0.71

(0.70) (0.74) (0.90) (0.75) (2.42) (0.59) (0.48)
First-stage F 44.95 45.07 45.41 45.86 51.04 45.01 45.13

Panel B: Avoidance depends on average pollution in the next 3 days
Average pollution, 0.89*** 0.88*** 1.10*** 0.80*** 1.10** -0.02 0.47***
next 3 days (0.16) (0.16) (0.27) (0.25) (0.51) (0.19) (0.15)
Current + All Lags 2.61*** 2.27*** 2.65*** 2.16*** 6.46** -0.52 -0.68

(0.73) (0.77) (0.92) (0.75) (2.55) (0.60) (0.49)
First-stage F 38.89 39.07 39.15 38.89 46.44 38.92 39.12

Panel C: Avoidance depends on average pollution in the next 7 days
Average pollution, 0.75*** 0.86*** 1.02** 0.72* 1.08 -0.30 0.62***
next 7 days (0.26) (0.24) (0.46) (0.40) (0.81) (0.28) (0.23)
Current + All Lags 2.69*** 2.31*** 2.75*** 2.11*** 6.72** -0.54 -0.65

(0.76) (0.81) (0.95) (0.76) (2.79) (0.64) (0.52)
First-stage F 36.45 36.00 36.69 35.15 41.91 36.48 36.75

Notes: The dependent variable is log(number of transactions) for a given consumption category in city i on day t. We assume that individuals perfectly foresee
pollution in the next few days and adjust spending accordingly. The instrument for future pollution is the same instrument for today’s pollution (defined in equation
(6) in the main text), leading 1 day (Panel A), 3 days (Panel B), and 7 days (Panel C). The remaining IVs and controls are identical to those in Table 2. Standard
errors are in parentheses, clustered at the city level. Significance levels are indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are
Kleibergen-Paap Wald rk F-stat that are robust to heteroskedasticity and clustered at the city level.
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Table I27: Correlation between Local, Nearby and Faraway Consumption and PM2.5

(1) (2) (3)

Corr(local consumption, nearby consumption) 0.33 0.33 0.37
Corr(local consumption, faraway consumption) 0.42 0.43 -0.12

Corr(local PM2.5, nearby PM2.5) 0.65 0.64 0.68
Corr(local PM2.5, faraway PM2.5) 0.34 0.18 0.26

City FEs Yes Yes Yes
Weather controls, holidays Yes Yes
City-specific seasonality Yes Yes
City-specific time trends Yes
Week-of-the-sample, and day-of-week FE Yes

Notes: The measure of consumption is the logarithm of spending on daily necessities. Corr(local consumption,nearby
consumption) is the correlation between consumption in each city with the total consumption in all cities within 150
km of the city. Corr(local consumption,faraway consumption) refers to the correlation between consumption in each
city with the total consumption in all cities outside a 150 km buffer zone around the city. Column (1) computes the
correlation coefficients after controlling for city fixed effects. Column (2) computes the correlation coefficients after
controlling for weather, holidays, and city-quarter fixed effects. Column (3) controls for weather, holidays, and city-
quarter fixed effects, as well as city-specific time trends, day-of-the-week fixed effects and week-of-the-sample fixed
effects.
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Table I28: IV Estimates of Pollution Impacts, Controlling for Spending Outside Buffer Zone

Health-Related Consumption

Baseline Controlling for faraway consumption

Current Day 0.12*** 0.12***
(0.02) (0.02)

Current + Past 3d 0.40*** 0.40***
(0.07) (0.07)

Current + Past 7d 0.61*** 0.63***
(0.10) (0.10)

Current + Past 14d 0.74*** 0.79***
(0.14) (0.14)

Current + Past 28d 0.91*** 0.97***
(0.22) (0.22)

Current + Past 56d 1.97*** 2.03***
(0.42) (0.42)

Current + All Lags 2.65*** 2.74***
(0.68) (0.68)

N 141794 141794
First-stage F 38.35 38.37

Notes: The dependent variable is log(number of transactions) for health spending in city i on day t. Column (1) has
the same controls and IVs as in Table 2. Column (2) additionally controls for the total consumption of daily necessities
in cities outside the buffer zone. Standard errors are in parentheses, clustered at the city level. Significance levels are
indicated by *** p < 0.01, ** p < 0.05, and * p < 0.10. The first-stage F-statistics are Kleibergen-Paap Wald rk F-stat
that are robust to heteroskedasticity and clustered at the city level.
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J Additional Figures

Figure J1: Three-Year Average PM2.5 Concentration

Jan. 2013 - Dec. 2015, µg/m3

Notes: Each dot represents a city. There are 329 cities in total.

A-45



Figure J2: National and Regional Average Daily PM2.5 Concentration (µg/m3) 2013-2015

(a) National

(b) Northern Region (c) Northeastern Region

(d) Northwestern Region (e) Southern Region

Notes: This figure reports the national and regional average daily PM2.5 concentration (µg/m3) during 2013-2015.
The Red line in all subfigures indicates the daily standard set by the US EPA: 35 µg/m3. Daily averages are across all
monitoring stations in the respective region.
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Figure J3: The Number of Active Bank Cards per Capita, 2015

Notes: Bank cards include debit and credit cards. Active bank cards are defined as cards that have been used at least
once in a given year. Each card is assigned to one primary city based on the location of its most frequent usage.
Population measure is year-end registered population of each city.

Figure J4: Annual Hospital Card Transactions vs. Hospital Visits
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Notes: The figure plots the logarithm of bank card transactions in hospitals (our data) against the logarithm of total
hospital visits (from the National Bureau of Statistics) at the province-year level from 2013 to 2015.
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Figure J5: Monthly Card Transactions vs. Ambulance Dispatches in Beijing 2013-2015

Notes: The figure plots the number of ambulance dispatches in Beijing (y-axis) against the number of card transactions
at hospitals in Beijing (x-axis) at the monthly level from 2013 to 2015.

Figure J6: Monthly Hospital Card Transactions vs. Insurance Claims in Ganzhou

Notes: The figure plots the logarithm of the number of insurance claims in Ganzhou (y-axis) against the logarithm of
the number of card transactions at hospitals in Ganzhou (x-axis). The data is aggregated to the monthly level from
January 2012 to September 2013.
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Figure J7: Wind-Pollution Vector Decomposition

(a) Wind-Pollution Vectors (b) Wind-Pollution Vectors toward Beijing

Notes: Panel (a) depicts the wind-pollution vector fields on Dec. 5, 2013. Each vector’s length indicates the wind speed
(re-scaled to match the distance traveled per day). Its width indicates the PM2.5 concentration level in the source city.
Panel (b) plots the decomposed subvectors pointing towards Beijing.
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Figure J8: Pollution intensity vs. wind direction in Shanghai

(a) Location of Shanghai (b) PM2.5 level vs. wind direction

(c) Pollution intensity from faraway cities
vs. wind direction

(d) Predicted exogenous pollution vs. wind
direction

Notes: Figure (a) plots the location of Shanghai. Figure (b) plots Shanghai’s average PM2.5 concentration when the
wind blows from different directions. The contour represents the average PM2.5 levels. For example, when the wind
blows from the west, the average PM2.5 level in Shanghai is around 72µg/m3. Similarly, Figures (c) and (d) plot the
pollution intensity in faraway cities and the predicted exogenous pollution levels in Shanghai from the first stage for
different wind directions.
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Figure J9: Nonlinear Impacts of Air Pollution

Notes: The figure plots ∑
90
τ=0 βτ , the percentage change in today’s total healthcare transactions as a result of a 10 µg/m3

increase in PM2.5 over the past 90 days, at different pollution levels as denoted by the x-axis. For example, a 10 µg/m3

increase in PM2.5 over the past 90 days raises total healthcare transactions by 2.21% when the PM2.5 concentration is
at 50 µg/m3. Based on parameter estimates reported in Appendix Table I15.

Figure J10: Impact of Air Pollution Across Income Levels

Notes: The figure plots the percentage change in total healthcare transactions for a 10 µg/m3 increase in PM2.5 over the
past 30, 60, or 90 days at different levels of per capita disposable income as denoted by the x-axis. For example, a 10
µg/m3 increase in PM2.5 over the past 90 days raises today’s total healthcare transactions by 2.44% when disposable
income is 15,000 yuan. Based on parameter estimates reported in Appendix Table I15.
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Figure J11: Weekly Healthcare Spending, 2013 - 2015

Notes: bank card transactions in all healthcare facilities aggregated to the national-week level from 2013 to 2015.
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Figure J12: Residualized Plot of Log Number of Transactions v. PM2.5 Concentration

(a) Total Healthcare Industry (b) Pharmacies

(c) People’s Hospitals (d) Children’s Hospitals

(e) Necessities (f) Supermarkets

Notes: Each dot denotes the in-group average residuals, partialing out city FEs, weekly FEs, city-specific time trends,
city-specific seasonality, day-of-week FEs, dummies for holidays and working weekends, and weather controls (tem-
perature, precipitation, wind speed). Groups are binned by residuals of PM2.5, depicted by the x-axis.
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Figure J13: Pollution intensity from faraway source cities and pollution level in destination cities

Notes: the figure plots average PM2.5 in destination cities (vertical axis) against the pollution intensity from faraway
source cities (horizontal axis). The latter is defined as the average PM2.5 of origin cities (outside the buffer zone),
weighted by the inverse of the distance between the source and destination cities, adjusted by wind direction. This
variable is a proxy for how much PM2.5 is imported from the source cities to the destination city, and is one of the IVs
used in our empirical analysis.
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Figure J14: Impact of Air Pollution on Number of Transactions from IV Regressions with 90 and 150
Lags

(a) βτ estimates

(b) Cumulative estimates ∑
k
τ=0 βτ

Notes: Figure (a) plots βτ , the percentage change in the number of transactions for the healthcare industry as a result of
a 10 µg/m3 increase in PM2.5 concentration on the τ-th day earlier as indicated by the x-axis. On the x-axis, 0 refers to
the current day, 30 refers to the 30th day earlier, etc. Green lines denote estimates using splines with 90-day lags and 3
segments. Red lines denote estimates using splines with 150-day lags and 3 segments. Solid lines (and solid segments)
indicate significance at the 5% level. Dashed lines indicate that the impact is statistically insignificant at the 5% level.
Figure (b) plots the cumulative effect ∑

k
τ=0 βτ , same as Figure 2.
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